Central Arctic Ocean Session @ Fall Pacific Arctic Group Meeting

Dec. 6, 2022

Arctic marine biogeochemical modeling in the ArCSII Project

Eiji Watanabe, Yuanxin Zhang and collaborators

Institute of Arctic Climate and Environment Research (IACE) Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

June 2020 ~ March 2025

Introduction

ArCSII Project Ocean Research Program

Research and Public Data Production on the Arctic Marine Environment

(PI: Eiji Watanabe, JAMSTEC / co-PI: Hiromichi Ueno, Hokkaido University)

Contribute to ecosystem-based fishery management

Ocean

DNA

Collaboration with other research programs

- Carbon budget (RECCAP2 framework)
- Chemical process inside snow on sea ice
- Land-ocean interaction via river water inflow
- Sea condition in marginal ice zone
- Economical assessment of fishery resource
- Coastal marine ecosystem
- International law on marine research

Contribute to safe and efficient sailing system

[Final Goals]

Production of ocean transport datasets

Process

- Establishment of marine environmental DNA analysis
- Mapping of marine ecosystem vulnerability
- Clarification of local process in marginal ice zone

[Intermediate Goals]

- Evaluation of riverine water impact on marine environment
- Production of satellite-based dynamic ocean height dataset
- Intercomparison of air-sea CO₂ flux datasets
- Production of satellite-based primary production dataset

Modeling Themes

A) Resuspended Particle Transport

B) Riverine Geochemical Inflow

Method

Pan-Arctic Sea Ice–Ocean Model

[COCO]

Center for Climate System Research Ocean Component Model version 4.9

25 km

280 x 200 x 28 grids

5 km

1280 x 1024 x 42 grids

Sea Ice Part

- 1 layer thermodynamics [Lipscomb et al., 2001]
- EVP rheology [Hunke and Duckwicz, 1997]
- 7 thickness category [Bitz et al., 2001]

Ocean Part

- free surface general circulation model
- UTOPIA/QUICKEST advection scheme
- turbulence closure scheme [Noh and Kim, 1999]

(for eddy-resolving configuration)

- Smagorinsky harmonic viscosity [Griffies, 2000]
- Enstrophy preserving scheme [Ishizaki and Motoi, 2001]

Experimental Design

- A,B) NCEP/CFSR C) JRA55-do/CMIP6 atmos forcing
- A) AOMIP B) WATCH C) JRA55-do/CMIP6 river water discharge B) 1979–2018
- Pacific water inflow at Bering Strait
- Sponge layer in Atlantic side
- Passive tracer (Barrow Canyon, river mouth)

Model Bathymetry

40 yrs

A) 2001–2020

18 yrs

Method

Ice-Ocean Biogeochemical Model

[Arctic NEMURO-C]

Experiment List

A) Resuspended Particle Transport

B) Riverine Geochemical Inflow

Modeling Themes

A) Resuspended Particle Transport

B) Riverine Geochemical Inflow

Watanabe, E., Onodera, J., Itoh, M., Mizobata, K. (2022) **Transport processes of seafloor sediment from the Chukchi shelf to the western Arctic basin**. JGR Oceans, 127. doi:10.1029/2021JC017958

Sediment transport and its impact on carbon supply in western Arctic Ocean were examined by high-resolution modeling analyses

Concentration of resuspended sediment

Watanabe et al. [2022, JGR Oceans]

Sediment transport from Chukchi shelf bottom contributes to a substantial part of carbon sink in western Arctic basin

Modeling Themes

A) Resuspended Particle Transport

B) Riverine Geochemical Inflow

Riverine Heat Impact

Park et al. (2020) Increasing riverine heat influx triggers Arctic sea-ice decline and oceanic and atmospheric warming. Science Advances, 6, eabc4699.

- Riverine heat impact on sea ice was quantitatively evaluated on the pan-Arctic and decadal scales
- Riverine heat input decreased annual mean sea-ice thickness by a maximum of more than 10%
- Atmospheric and ocean warming is amplified by ice-albedo feedback

Riverine heat flux from land-surface model "CHANGE" was added to pan-Arctic sea ice-ocean model "COCO"

Press release article is available on JAMSTEC website "Increasing Riverine Heat Triggers the Arctic Warming" [http://www.jamstec.go.jp/e/about/press_release/20201107/]

> Impact of riverine nutrients and TA/DIC on various marine environments will be assessed as a next step

Riverine Biogeochemical Impact

Ω

pН

- Arctic rivers' freshwater fluxes: land-surface model "CHANGE"
- Monthly climatology concentrations of nutrient (Nitrate, Silicate) and Carbon (TA, DIC) for 13 Arctic rivers: ArcticGRO program

Experiment ID	Freshwater Flux	Nutrient flux	Carbon Flux
Tracer Run (TRA)	Yes	-	-
Control Run (CTL)	Yes	-	-
Nutrient Run (NUT)	Yes	Yes	
Carbon Run (CAR)	Yes	-	Yes
Carbon+Nutrient Run (CN)	Yes	Yes	Yes

Modeling Themes

A) Resuspended Particle Transport

B) Riverine Geochemical Inflow

Ice Algal Productivity

Watanabe et al. (2019) Multi-model intercomparison of the pan-Arctic ice-algal productivity on seasonal, interannual (1980-2009), and decadal timescales, *JGR Oceans*

Uncertainties and controlling factors in several sub-regions are analyzed

Dataset is available at Arctic Data Archive System (ADS) "Primary productivity of sea-ice algae and the related variables in the Arctic Ocean simulated by five FAMOS models" [https://ads.nipr.ac.jp/dataset/A20190924-001]

- Stable habitat and enough light are both necessary for high PP
- Spring nitrate is a controlling factor
- Maximum growth rate parameter accounts for inter-model spread

IAMIP2

~ Ice Algae Model Intercomparison Project Phase 2 ~

	UTAS	UAF-G	UAF-R	IOS		
Model	* . ACCESS-OM2	CESM	RASM	CanNEMO	NEMO-NAA	COCO-Arctic NEMURO
Relevant CMIP6	ACCESS-ESM1.5 ACCESS-CM2	CESM2	CESM2	CanESM5	CanESM5	MIROC6
Ocean dynamics	MOM5.1	POP2	POP2	OPA	OPA	COCO4.9
Sea-ice dynamics	CICE5.1.2	CICE5.1.2	CICE5.1.2	LIM2	LIM2	COCO4.9
Ocean ecosystem	WOMBAT	Moore et al. [2013]	Moore et al. [2013]	CanOE	CanOE	Arctic NEMURO
Sea-ice ecosystem	Biogeochemistry of CICE	(Jin et al., 2006)	(Jin et al., 2006)	CSIB	CSIB	Arctic NEMURO
Spatial domain	Global	Global	Pan-Arctic	Global	Pan-Arctic	Pan-Arctic
Horizontal resolution	1º (1/4º, 1/10º)	1°	1/12 º	1 °	1/4°	1/4°
Reference	Kiss et al. [2020]	Jin et al. [2018]	Jin et al. [2018]	Swart et al. [2019]	Hayashida et al. [2019]	Watanabe et al. [2015]

6 models in Australia, U.S.A., Canada, and Japan

Control (JRA55-do Repeat Year Forcing from 1st May 1990 to 30th April 1991)

Hayashida et al. (2021) Ice Algae Model Intercomparison Project phase 2 Geoscientific Model Development

Results

Model Intercomparison of Ice-algal Productivity

Barents Sea

Ice algae and its controlling factors in the Chukchi Sea during 1958-2100, SSP5-8.5 for future projection

Future works

- Estimate the effects of terrestrial organic matter/permafrost thawing on Ocean Acidification and primary production in the different Arctic Seas
- Simulation using different atmospheric forcing datasets to compare ice-PP under various future climate conditions (scenarios SSP5-8.5/1-2.6)
- Multi-model intercomparison on seasonal, interannual, and decadal timescales of ice-PP among 3 Earth System Models and 2 regional models to estimate the uncertainties of different model behaviors (Hayashida et al., 2021)
- Quantify the impact of ice-PP on the Arctic primary production of phytoplankton and carbon cycle