

Recent Update of Arctic Research and Products

Jia Wang NOAA Great Lakes Environmental Research Laboratory (GLERL), Ann Arbor, Michigan; jia.wang@noaa.gov

Ayumi Fujisaki-Manome, Haoguo Hu, Dmitry Beletsky Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan

PAG Fall Meeting, Victoria, BC, Canada, December 5-6, 2022

Support: NOAA GOMO/CPO Arctic Research Program, NOS

Contents

- 2. Hindcast of Arctic summer sea ice using regression models (potential for seasonal forecast)
- 3. GLERL-CIGLR Arctic sea-route nowcast/forecast System (GCAS) (5-day prediction)
- 4. ALaska Coastal Ocean Forecast System (ALCOFS) (5-day prediction)
- 5. Great Lakes coupled FVCOM_ice_wave model
- 6. Summary and future efforts

NOAA

1. Interannual and decadal variability in Arctic summer sea ice, 1850-2017

- Arctic amplification,
- teleconnections, and
- ice/ocean albedo feedback loop → accelerating melting

Cai, Q., J. Wang, D. Beletsky, J.E. Overland, M. Ikeda, L. Wan, 2021, Accelerated Decline of Summer Arctic Sea Ice during 1850-2017 and the amplified Arctic warming during the recent decades, *Environ. Res. Lett.*, **16** (2021) 034015.

Cai, Q., D. Beletsky, J. Wang, and R. Lei, 2021. Interannual and decadal variability of Arctic summer sea ice associated with atmospheric teleconnection patterns during 1850-2017. *J. Climate,* DOI: <u>https://doi.org/10.1175/JCLI-D-20-0330.1</u>

Lin, Y-C, A. Fujisaki-Manome, and J. Wang, 2022. Recently Amplified Interannual Variability of Great Lakes Ice Cover and its Connection to Sea Ice over the Bering and Chukchi Seas, *J. Climate*, 35, 2683-2700, DOI: 10.1175/JCLI-D-21-0448.1

Arctic Regions

7 Regions were considered

- 1. Chukchi/Beaufort/Canadian Archipelago
- 2. Laptev and Eastern Siberian Seas
- 3. Central Arctic
- 4. Barents and Kara Seas
- 5. Greenland Sea
- 6. Baffin Bay
- 7. Whole Arctic (=1+2+3+4+5+6)

Teleconnection Patterns

Interannual Scale:

- Arctic Oscillation (AO)
- Arctic Dipole Anomaly (DA)
 - Referred to as Central Arctic Index (CAI)
- North Atlantic Oscillation (NAO)
- El Niño-Southern Oscillation (ENSO)
 - Used Nino 3.4

Decadal Scale:

- Atlantic Multidecadal Oscillation (AMO)
- Pacific Decadal Oscillation (PDO)

Image based on figure from Wang (2021)

Accelerated Summer Arctic Sea Ice Decline during 1850-2017 due to positive ice/ocean albedo feedback exerted by the amplified **Arctic warming** driven simultaneously by both global warming and the warming caused by teleconnection patterns during the recent decades (Cai et al. 2021a, ERL, 2021b, JC)

Principal Component (CP)/EOF Analysis of Sea Ice:

PC1: In-phase sea ice oscillation (up and down)→Thermodynamics PC2: Out-of-phase oscillation between Pacific and Atlantic Arctic→Dynamics

2. Hindcast of Arctic summer sea ice using regression models (potential for seasonal forecast)

Objectives

- Using monthly teleconnection pattern indices
- Hindcasting September Arctic sea ice extent using regression models
- Projecting Sep. minimum sea ice using teleconnection pattern indices observed before Sep.

Arctic Regions

- Greenland and Baffin
 were removed
 - Due to insufficient September sea ice quantities and variability
- Barents September sea ice was low but had sufficient variability

11.5

11.0

14.0

13.5

13.0

12.5

12.0

11.5

11.0

-2

-1

y=12.6+-6.16e-02x

r=-0.0753 p=0.592

R=0.0859 p=0.541

y=12.5+9.19e-02x² r=0.199 p=0.153

y=12.5+1.60e-01x

y=12.5+9.88e-02x+5.29e-02x2 R=0.22 p=0.114

r=0.203 p=0.146

lulv

1

April

y=12.6+-8.07e-02x+1.95e-02x2

15

-1

-1

Ó

May

y=12.6+-3.82e02x2

y=12.7+1.23e-01x+-7.25e-02x2

August

r=-0.0997 p=0.478

y= 12.6+5.48e-02x

r=0.0781 p=0.578

R=0.18 p=0.197

0

-2

y=12.6+1.58e-02x r=0.0222 p=0.874

R=0.0523 p=0.71

y=12.6+4.01e-02x+-1.81e-02x²

ż

ż

ś.

Monthly AO Index

-1

-2

ó

September

.

1

ó

з

ż

Arctic

			r	р	
February	AO	Quadratic	-0.176	0.208	
February	AO	Linear	-0.191	0.171	Considerations
January	CAI	Linear	0.207	0.136	- Significance
May	NAO	Quadratic	0.136	0.332	- Positive vs
May	NAO	Linear	0.273	0.0481	Negative
March	NINO 3.4	Linear	0.125	0.372	- Closer to
August	AMO	Quadratic	-0.203	0.145	September
August	AMO	Linear	-0.436	0.00111	- Skills for
April	PDO	Quadratic	0.221	0.112	projection
April	PDO	Linear	0.164	0.241	

Conception Model for All Regions

September sea ice = interannual (teleconnection forcing)	(1)
+ interannual interactions	(2)
+ decadal (teleconnection forcing)	(3)
+ decadal-interannual interactions	(4)
+ decadal interactions	(5)

Interannual teleconnections: AO, DA/CAI, Nino3.4, NAO Decadal teleconnections: AMO, PDO

Arctic Example: Regression Model

 $y = 12.521 - 0.401(AO_2) + 0.055(AO_2^2) + 0.234(CAI_1) + 0.104(NAO_5)$ $-0.006(NAO_5^2) + 0.079(NINO_3)$ (1)

$$-0.040(AO_{2} * CAI_{1}) - 0.104(NINO_{3} * AO_{2}) -0.032(NINO_{3} * CAI_{1}) - 0.050(NAO_{5} * AO_{2}) -0.044(NAO_{5} * CAI_{1})$$
(2)

 $-2.934(AMO_8) - 3.349(AMO_8^2) + 0.141(PDO_4) + 0.100(PDO_4^2)$ (3)

$$\begin{array}{l} -0.240(AMO_8 * AO_2) + 0.209(AMO_8 * CAI_1) \\ -0.506(AMO_8 * NAO_5) + 0.299(PDO_4^2 * AO_2) \\ -0.048(PDO_4^2 * CAI_1) - 0.032(PDO_4^2 * NINO_3) \end{array} \tag{4}$$

 $+1.305(PDO_4^2 * AMO_8)$

(5)

Results: Model vs Observation

3) GLERL-CIGLR Arctic-Sea Routes Nowcast/Forecast System (GCAS) (5-day prediction)

- 5-day forecast for sea ice and ocean conditions
- Based on ICEPOM (parallelized version of Princeton Ocean Model coupled with an ice model)
- Higher-resolution model covering the Northern Sea Route is being developed. A realtime version is anticipated to become on live in June 2021.

Nested ² domain (shaded by bathymetry) with the Northeast Passage (red line)

- Primitive equations (POM-based)
- Fully parallelized
- Ice dynamics with EVP rheology
- 0-layer ice thermodynamics with snow cover
- 25 km grids
- Climate Forecast Reanalysis (CFSR)
- 13 major river inputs from the discharge data of the Arctic Ocean Model Inter-comparison Project.

NOAA

GCAS 25-km model's5-day prediction (Oct12-17, 2021)

http://ww2/res/arctic_forecast/gcas/index.html

Great Lakes Environmental Research Laboratory's Arctic Research and Applications

GLERL's GCAS 4-km model's 5-day (Dec 3-7, 2022) prediction:

ice concentration and temperature (animation)

ice thickness and salinity (animation)

along Northeast Passage

NOAA

4. ALaska Coastal Ocean Forecast System (ALCOFS) (PI: Johannes Westerink (Notre Dame)

Alaska ADCIRC+WW3+HYCOM+CICE model

Coupling is conducted through the NOAA Environmental Modeling System (NEMS) and the Earth System Modeling Framework (ESMF)

CICE standalone, regional configuration

Covered domain. Color contour is sea surface temperature from GOFS3.1 interpolated to the ice model grid.

- CICE Version 6
- Horizontal resolution 3 km
- Elastic-Viscous-Plastic rheology
- CFSv2 atmospheric forcing
- GOFS3.1 (HYCOM) ocean forcing (T, S, U, V)
- Slab ocean mixed layer model. Restored to GOFS's SST on 3 day time scale.
- Snow accumulation based on precipitation rate from CFSv2
- Continuous B.C. along the northern boundary.
- January December 2011, October 2017- September 2019

Hindcast skill assessment, sea ice extent

5. Coupled FVCOM_ice_wave model

Ice cover dampen waves (done, Bai et al. 2020, ODyn). Waves break ice and generate mixing to the upper ocean (on-going)

6. Summary and Future Efforts

- Investigated sea ice variability on seasonal, interannual and decadal time scales
- Developed regression models for projecting seasonal summer/September sea ice using teleconnections (indices) only
- Developing GLERL-CIGLR Arctic sea route nowcast/forecast System (GCAS) (5-day forecast), publicized in FY23
- Implemented newest version, CICE6, for ALaska Coastal Ocean Forecast System (ALCOFS), led by U. Notre Dame, transitioned to NCEP
- Developing coupled FVCOM_ice_wave model:
 - Landfast ice module
 - Ice-wave feedback/interaction parameterization (module): ice dampens waves (done), waves break ice to smaller pieces (on going)
 - Wave mixing parameterization to the water column with no ice cover (module)

NORA

IcePOM simulates ice trajectories

Selected domain from the model

74 - 80 °N, 130-160 °W

from 2005 to 2017

Arctic buoys distribution. No buoys were found in the Northeast Passage region

Numerical Experiments

Perturbed process	
Air-ice drag coefficient	 Constant Variable form drag by Tsamados et al. (2015, JPO)
Landfast ice	 None Basal stress on. Free parametesr k1, k2 are perturbed.
Snow properties	 Default snow density 330kg/m3, thermal conductivity 0.3W/K/m. Reduced snow density 250kg/m3, thermal conductivity 0.17W/K/m.

5 days forecast: ice distribution

Model started on: May 12

Result date: May 17

'HYCOM' is from Navy's global operational ocean

NOAA

1. Motivation

Accelerating decline in Arctic summer sea ice Impacts: Commercial and recreational shipping and ecosystem/fisheries

Climatological Spatial Distribution of Summer Sea Ice during Various Periods

Impacts of diminishing summer sea ice on commercial shipping (Lei, Wang, et al. 2015 CRST)

Great Lakes Environmental Research Laborator

GCAS 4-km model's 5-day (Oct 22-26, 2021) prediction:

ice concentration and

Coupled model components

- Using NOAA Environmental Modeling System (NEMS) and Earth System Modeling Framework (ESMF).
- Flexible architecture that enables model coupling without changing source codes of each model.
- Well aligns with Coastal and Marine themes of the Unified Forecast System (UFS).
- But some undertaking to set up.
- Currently the team is setting up a coupled application for a small test case.

EOF Modes of Summer Sea Ice Regressed to SLP, SAT, and SIC

CP1: Zonal Warming In-phase ice decrease

Anomalies:

CP2: Meridional Warming/

Warming/ Cooling Out-of-phase ice seesaw

Composite Analysis (positive minus negative group):

-0.4 0

(g) SIA

0.8 -0.6 -0.4 -0.2

0

1.2

1948-2017

1948-2013

0.4 0.6 0.8

0.3 06 09

1948-2017

1948-2013

PDO

NOAA

SAT

SIC

(2)

Arctic Example: General Equation

$$y = a + b_1(AO_2) + b_2(AO_2^2) + c_1(CAI_1) + d_1(NAO_5) + d_2(NAO_5^2)$$
(1)
+ $e_1(NINO_3)$

 $\begin{array}{l} +f(AO_2 * CAI_1) + g_1(NINO_3 * AO_2) + g_2(NINO_3 * CAI_1) \\ +h_1(NAO_5 * AO_2) + h_2(NAO_5 * CAI_1) \end{array}$

$$+i_1(AMO_8) + i_2(AMO_8^2) + j_1(PDO_4) + j_2(PDO_4^2)$$
(3)

$$+k_{1}(AMO_{8} * AO_{2}) + k_{2}(AMO_{8} * CAI_{1}) + k_{3}(AMO_{8} * NAO_{5}) + l_{1}(PDO_{4}^{2} * AO_{2}) + l_{2}(PDO_{4}^{2} * CAI_{1}) + l_{3}(PDO_{4}^{2} * NINO_{3}) + m(PDO_{4}^{2} * AMO_{8})$$

$$(4)$$

Methods: Step

ク

1979-2016 Climatology of ice concentration, thickness, velocity, surface S&T and 300-m T on Feb 14, 1980

25-km resolution Coupled Ice-Ocean Model (CIOM/IcePOM) for the period 1979-2016

5-day prediction (Oct. 12-17, 2021)

