IB R/V ARAON Arctic Survey (2010~2019)

Long-term Observation Hot spot of Sea Ice Loss, Warming Atmosphere, and Changing Ecosystems in Pacific Arctic Region

We are collaborating closely with our partners in Pacific Arctic Group (PAG) to find synergies and joint activities to avoid overlapping efforts.

<table>
<thead>
<tr>
<th>Year</th>
<th>CTD</th>
<th>XCTD</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>38</td>
<td>*</td>
<td>07/20~08/10</td>
</tr>
<tr>
<td>2011</td>
<td>18</td>
<td>33</td>
<td>08/02~08/16</td>
</tr>
<tr>
<td>2012</td>
<td>44</td>
<td>48</td>
<td>08/04~09/06</td>
</tr>
<tr>
<td>2013</td>
<td>16</td>
<td>36</td>
<td>08/24~09/01</td>
</tr>
<tr>
<td>2014</td>
<td>32</td>
<td>51</td>
<td>08/01~08/23</td>
</tr>
<tr>
<td>2015</td>
<td>42</td>
<td>61</td>
<td>08/01~08/21</td>
</tr>
<tr>
<td>2016</td>
<td>34</td>
<td>38</td>
<td>08/05~08/21</td>
</tr>
<tr>
<td>2017</td>
<td>35</td>
<td>30</td>
<td>08/06~08/24</td>
</tr>
<tr>
<td>2018</td>
<td>25</td>
<td>30</td>
<td>08/04~08/25</td>
</tr>
<tr>
<td>2019</td>
<td>34</td>
<td>20</td>
<td>08/03~08/26</td>
</tr>
</tbody>
</table>
2020 KOPRI Arctic Research activity

First Leg: 2020. 7. 24 ~ 8. 23

Second Leg: 2020. 8.25 ~ 9.20
2020 KOPRI Arctic Ocean Expedition (1st leg)

Ocean-Sea Ice-Atmosphere Integrated Observations
(Bering strait, Chukchi/East Siberian Seas of Pacific CAO)
- Korea Arctic Ocean Observing System (K-AOOS)
- Research on analytical technique for satellite observation of Arctic Sea ice (STAR)

Aims of the cruise:
- To identify key environmental parameters (physical and biogeochemical) in rapid transition due to the sea-ice decrease in the Pacific Central Arctic Ocean (CAO) and predict environmental change patterns.
- To development of satellite-based sea ice change observation system

Period: 2020. 7.243 - 8.23 (from Dutch Harbor to Barrow)
Chief Scientists: Eun-Jin Yang (ejyang@kopri.re.kr)
Participating nations: Korea, Croatia, Germany, the UK, France, China
2020 Arctic Ocean Expedition

1st Leg (ocean-sea ice-atmosphere)

- North of Bering strait
- Chukchi shelf
- Chukchi Borderland to East Siberian Sea
- DBO line 3
- 2 Sea Ice stations
- Ocean mooring stations (5 set)
Atmospheric Observations

- Surface and upper-air meteorological variables: understanding and prediction of weather events
- Radiative fluxes and clouds: clouds’ role in radiation budget, cloud amount & vertical distribution

- Aerosols and gases: Black carbon (BC), ozone, cloud condensation nuclei (CCN), PM10, etc.
Physical Oceanography

Objective: to identify the variation of water mass distribution and structure
Equipment: CTD, XCTD, Lowered ADCP, ocean mooring system
Ocean mooring system: ADCP, microCAT, temperature logger, sediment trap, AZFP, nitrate sensor (SUNA V2), Fluorescence & PAR sensors

2019 Arctic Ocean Mooring
Chemical Oceanography

- Spatial and temporal variation of pCO$_2$ in the Arctic Ocean
- Characteristics of dissolved inorganic carbon (DIC)
- Net community production (NCP) using MIMS (Membrane-inlet Mass Spectrometry)

- Distributions of nutrients (NH$_4$, NO$_2$+NO$_3$, PO$_4$ and SiO$_2$)
- Characteristics of dissolved and particulate organic matters (DOM and POM)
- Distributions of river water and ice melt water
- Sinking particle flux

Continuous observation system of pCO$_2$

Dissolved pCO$_2$ along the track

Dissolved O$_2$/Ar along the track

Continuous observation system (MMIS)

Nutrient

Dissolved organic matter

Ice melt water fraction

River water fraction
Biological Oceanography

- **Bacteria** abundance and community structure
- **Phytoplankton** community structure, Production, Physiology (F_v/F_m)
- **Microzooplankton** community structure and grazing impact
- **Mesozooplankton** community structure and grazing impact
- **Deep scattering layer** distribution and abundance of invertebrate and fish
- **Planktonic food web structure** by in situ experiment and radio-isotope

[scientific eco-sounder]

- [acoustic backscatter]
- [Copepod distribution]
- [Plankton structure]
Phytoplankton biomass variation

- Phytoplankton biomass (Chl-a) and size fraction represented the interannual variations in the NESS.
- Phytoplankton blooms were mainly caused by the large size diatom group.
- Bering Strait: high primary production and diatom dominance -> Mesozooplankton
- NCS: Low primary production and picophytoplankton dominance
 -> Protozoa and mesozooplankton
- ECSS: Diatom dominance -> protozoa/mesozooplankton
Seasonal variation of Particle flux

Sediment trap is the most powerful tool for investigating the carbon cycle changes in the Arctic Ocean

- East Siberian Sea -100m & 320m (only summer)
- Southern Chukchi Sea -100m
- Chukchi Borderland -100m & 500m
Seasonal variation of Particle mass flux

East Siberian Sea

![Graph showing seasonal variation of Particle mass flux in the East Siberian Sea.](image)

Chukchi Sea

![Graph showing seasonal variation of Particle mass flux in the Chukchi Sea.](image)

Total mass flux (mg m⁻² yr⁻¹)

- **2017**
- **2018**
- **2019**

Notes

- Summer-Fall bloom?
- Under sea ice bloom?
- CHL (62m)
Seasonal variation of zooplankton using AZFP (East Siberian Sea)
Sea ice bio-physics

- Buoy deployments and in-situ measurements for bio-physical observation
 - To measure in-situ bio-physical parameters of atmosphere-snow-sea ice-underwater sea ice
 - To study the air-ice-ocean interaction, ice deformation, melt pond energy budget
- To define environmental characteristics of various melt ponds on sea ice floes
- International collaboration: KOPRI, BAS(UK), AWI(Germany), France (LOCEAN)

https://www.changing-arctic-ocean.ac.uk/project/eco-light/people/

(By Eco-Light program)
Ice Surface Scanning (ice surface roughness measurements)

- Sea ice surface roughness will be measured by using 3D laser scanner with 3 mm accuracy
- High-resolution satellite SAR images were acquired during the ice surface scanning
- Measured ice roughness will be compared to microwave backscattering derived from the SAR
- It is expect an algorithm for sea ice surface roughness estimates from satellite SAR is developed
Remote Sensing

UAV (unmanned aerial vehicle) observation (high-resolution image acquisition)

- Very-high-resolution (VHR) image acquisition using UAV over drifting arctic sea ice was conducted.
- The VHR images (a spatial resolution of few centimeters) were acquired in unfavorable cloudy conditions for optical satellite imagery acquisition.
- Digital elevation model and mosaicked image can be used for further analyses, e.g., sea ice surface roughness measurement, melt pond distribution analysis and satellite data derived sea ice product validation.
2020 KOPRI Arctic Expedition (2rd Leg)

- Marine geology/geophysics/biology (East Siberian Sea)

Aims of the cruise:

- To map geological features/structures in the Arctic continental margin
- To examine subsurface geology, permafrost, and gas hydrate and/or free gas accumulation, methane cycle, and methane-related microbiology in the Arctic
- To document subsea bed geological processes, such as permafrost degradation, submarine slope failure, and methane release on the Arctic shelf/slope

Period: 2020. 8.25 - 9.20 (from Barrow to Nome)

Number of participants: 40

Chief Scientists: Dr. Young-Keun Jin (ykjin@kopri.re.kr)

Participating nations: Korea, Russia,
2020 Arctic Expedition (2nd Leg)

Study Area: East Siberian Sea

Research items:
- Multichannel seismic survey
- OBS survey
- Sub-bottom profiling
- Bathymetric mapping
- Sediment coring
- Heat flow measurements
- Water column study
- Methane flux study
- Microbiological study
Korea Arctic Ocean-data System (KAOS) for Data share

KAOS [http://kaos.kopri.re.kr]