Study on marine microbial ecology in the Arctic — From the picoeukaryotic aspect

Fang Zhang
Polar Research Institute of China
2019-9-22
Introduction

- Picophytoplankton in the Central Arctic Ocean
 - Physicochemical factors
 - Abundance and community structure of picophytoplankton
 - Environmental correlations of picophytoplankton community

- Picoeukaryotes in the southern Chukchi Sea
 - Community structure in midsummer
 - Community structure in early autumn
 - Environmental correlations of picoeukaryotes community
Why picoeukaryotes?

- Picoeukaryotes are vital to polar marine ecosystems, as they dominate the photosynthetic biomass throughout much of the year.
- They feature both abundant and diverse heterotrophic populations.
- The heterotrophic fractions are also very important for carbon flows and nutrient remineralization.
• The Arctic is warming much faster than are other regions
• Temperature, salinity, and nutrient levels in seawater are altered, transformations in global circulation may also be changed
• Picoeukaryotes are sensitive to these changes
• It is imperative to gain a better understanding of picoeukaryote community composition and diversity, as well as the extent to which physicochemical factors influence the microbial community.
Picophytoplankton in the Central Arctic Ocean
Background

- Sea ice melts drastically at the polar region, both irradiance and fresh water increase along with this change;
- Fresh water increase will induce strong halocline and hinder the replenishment of nutrients from the deep water column.
Study area & Sampling sites

Zhang et al. 2015 《Polar Biology》
Environmental parameters, Chlorophyll a concentrations, and picophytoplankton abundance at each sampling station

<table>
<thead>
<tr>
<th>Station</th>
<th>Longitude (°W)</th>
<th>Latitude (°N)</th>
<th>Ice cover (%)</th>
<th>Temperature (°C)</th>
<th>Salinity (psu)</th>
<th>P (μmol L⁻¹)</th>
<th>NO₂⁺NO₃ (μmol L⁻¹)</th>
<th>Si (μmol L⁻¹)</th>
<th>Chl a (μg L⁻¹)</th>
<th>Picophytoplankton abundance (×10⁴ cells L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP01</td>
<td>164.64</td>
<td>84.17</td>
<td>60</td>
<td>-0.6</td>
<td>29.2</td>
<td>0.58</td>
<td>-</td>
<td>2.06</td>
<td>0.062</td>
<td>0.021 0.000 0.083 5.30</td>
</tr>
<tr>
<td>NP02</td>
<td>173.20</td>
<td>84.59</td>
<td>60</td>
<td>-0.6</td>
<td>29.6</td>
<td>0.59</td>
<td>-</td>
<td>2.02</td>
<td>0.083</td>
<td>0.021 0.000 0.104 6.97</td>
</tr>
<tr>
<td>NP03</td>
<td>178.58</td>
<td>85.48</td>
<td>80</td>
<td>-0.7</td>
<td>30.1</td>
<td>0.46</td>
<td>-</td>
<td>5.81</td>
<td>0.186</td>
<td>0.072 0.021 0.279 9.47</td>
</tr>
<tr>
<td>NP04</td>
<td>178.73</td>
<td>85.87</td>
<td>60</td>
<td>-1.0</td>
<td>30.9</td>
<td>0.60</td>
<td>-</td>
<td>6.75</td>
<td>0.227</td>
<td>0.114 0.021 0.362 8.62</td>
</tr>
<tr>
<td>NP05</td>
<td>179.24</td>
<td>86.37</td>
<td>60</td>
<td>-1.1</td>
<td>30.5</td>
<td>0.60</td>
<td>-</td>
<td>7.67</td>
<td>0.155</td>
<td>0.134 0.031 0.320 6.55</td>
</tr>
<tr>
<td>NP06</td>
<td>178.45</td>
<td>86.91</td>
<td>80</td>
<td>-1.2</td>
<td>30.0</td>
<td>0.76</td>
<td>-</td>
<td>9.42</td>
<td>0.052</td>
<td>0.052 0.010 0.114 4.23</td>
</tr>
<tr>
<td>NP07</td>
<td>173.92</td>
<td>87.88</td>
<td>60</td>
<td>-1.0</td>
<td>30.3</td>
<td>0.71</td>
<td>0.74</td>
<td>5.74</td>
<td>0.227</td>
<td>0.155 0.010 0.392 4.18</td>
</tr>
<tr>
<td>NP09</td>
<td>177.04</td>
<td>88.39</td>
<td>90</td>
<td>-1.0</td>
<td>30.3</td>
<td>0.02</td>
<td>0.25</td>
<td>0.42</td>
<td>0.268</td>
<td>0.114 0.010 0.392 4.28</td>
</tr>
<tr>
<td>NP12</td>
<td>178.41</td>
<td>86.90</td>
<td>70</td>
<td>-1.2</td>
<td>30.0</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.114</td>
<td>0.124 0.021 0.259 2.61</td>
</tr>
<tr>
<td>NP13</td>
<td>176.00</td>
<td>86.45</td>
<td>40</td>
<td>-0.9</td>
<td>30.0</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.114</td>
<td>0.103 0.010 0.227 4.21</td>
</tr>
<tr>
<td>NP14</td>
<td>171.59</td>
<td>85.81</td>
<td>50</td>
<td>-0.8</td>
<td>29.2</td>
<td>0.85</td>
<td>-</td>
<td>4.90</td>
<td>0.072</td>
<td>0.041 0.010 0.123 5.01</td>
</tr>
<tr>
<td>NP15</td>
<td>170.84</td>
<td>85.28</td>
<td>30</td>
<td>-0.9</td>
<td>29.4</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>0.041</td>
<td>0.010 0.000 0.051 3.72</td>
</tr>
<tr>
<td>NP16</td>
<td>171.16</td>
<td>84.46</td>
<td>80</td>
<td>-1.0</td>
<td>29.6</td>
<td>0.49</td>
<td>-</td>
<td>5.83</td>
<td>0.041</td>
<td>0.021 0.000 0.062 2.59</td>
</tr>
<tr>
<td>NP18</td>
<td>170.52</td>
<td>83.32</td>
<td>90</td>
<td>-1.0</td>
<td>29.0</td>
<td>0.67</td>
<td>-</td>
<td>3.06</td>
<td>0.031</td>
<td>0.021 0.000 0.052 1.58</td>
</tr>
<tr>
<td>NP19</td>
<td>169.24</td>
<td>82.60</td>
<td>70</td>
<td>-1.1</td>
<td>26.0</td>
<td>0.71</td>
<td>-</td>
<td>2.68</td>
<td>0.041</td>
<td>0.021 0.000 0.062 1.97</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>-1.0</td>
<td>29.7</td>
<td>0.18</td>
<td>4.21</td>
<td></td>
<td>0.115</td>
<td>0.000 0.010 0.183 4.97</td>
</tr>
<tr>
<td>NP03 (30m)</td>
<td>178.58</td>
<td>85.48</td>
<td>80</td>
<td>-1.1</td>
<td>31.5</td>
<td>0.60</td>
<td>0.44</td>
<td>7.71</td>
<td>0.165</td>
<td>0.054 0.011 0.230 6.55</td>
</tr>
</tbody>
</table>
Composition of picophytoplankton community determined by HPLC pigment and CHEMTEX
Community composition at genus level obtained by pyrosequencing

- Prasinophytes were mainly composed of *Pyramimonas* and *Micromonas*.
- Diatoms were mainly composed of *Chaetoceros*, *Thalassiosira*, *Actinocyclus*, *Pleurosigma* and *Navicula* with *Chaetoceros* as dominant genus.
- Haptophytes were composed of *Prymnesiales*, *Chromulinales*, and *Ochromonadales* with *Phaeocystis* as the dominant genus.
- *Gyrodinium* and *Gymnodinium* were the main genera composing dinoflagellates.
Picophytoplankton phylotype relationships in an ordination diagram of physiochemical factors

salinity > latitude > temperature
> ice coverage > silicate > phosphorous > nitrogen
Conclusion

- The dominance of picophytoplankton in the phytoplankton population will increase.
- The total amount of Chl a would decrease along with the melting; this decrease trend would be weaker closer to the North Pole.
Picoeukaryotes in the southern Chukchi Sea
Study area & Sampling sites

Zhang et al. unpubl. data
Temperature and Salinity

July T: -0.47 °C to 6.73 °C; S: 31.05 to 32.77 Water mass: BSW
Sep. T: -0.64 °C to 7.21 °C; S: 27.46 to 33.17 Water mass: ACW
(0-10 m) & BSW (>10 m)
pH, DO, Chl a and macronutrients in July
pH, DO, Chl α and macronutrients in September
pH, DO, and macronutrients in September
Venn diagram for OTUs in different water masses
Main classes in different water masses

![Bar chart showing reads contribution to the picoeukaryote library for different water masses (ACW-S, BSW-S, BSW-J) across picoeukaryote classes.](chart)

- Trebouxiophyceae: 16.2%, 7.8%, 6.1%, 6.4%, 2.0%, 2.9%, 0.5%, 0.5%, 0.8%, 0.8%, 0.8%, 0.6%, 0.6%, 0.8%, 0.5%
- Dinophyceae: 4.6%, 6.4%, 5.3%, 2.9%, 0.5%, 0.8%, 0.8%, 0.8%, 3.1%, 3.1%, 3.1%, 3.1%, 1.6%, 0.5%
- Prasinophyceae: 6.4%, 7.8%, 2.9%, 0.5%, 0.8%, 0.8%, 3.1%, 3.1%, 1.6%, 0.5%
- Choanoflagellata: 7.4%, 0.5%, 0.8%, 0.8%, 3.1%, 1.6%, 0.5%
- Chrysophyceae: 6.8%, 0.5%, 0.5%, 0.8%, 0.8%, 0.8%, 0.8%
- Bolidophyceae: 6.3%, 3.1%, 1.6%, 0.5%
- Teonema: 0.5%, 0.5%, 0.5%
- Dictyochophyceae: 0.5%, 0.5%
- Spirorichea: 0.5%
- Mamiellophyceae: 42.3%, 48.3%

Picoeukaryote classes

Reads contribution to the picoeukaryote library
Main genera in different water masses
Picoeukaryote community relationships in an ordination diagram of physiochemical factors

July

nitrogen > phosphate > Chl a > salinity > pH > DO > temperature > silicate
September

DO > temperature > Chl a > silicate > salinity > nitrogen > phosphate > pH
Discussion and Conclusion

- The Chukchi Sea is one of most N-limiting area in the global ocean and severely N-limited during the phytoplankton growth season.
- Diatom blooming inhibited the growth of Mamiellophyceae, which would be more abundant in a postbloom situation.
- The diatom blooming exhausted silicate, whereas relatively high nitrogen and phosphate were still detected.
- These nutrients could still support the growth of other picophytoplankton but Mamiellophyceae, i.e., Trebouxiophyceae and Chrysophyceae.
The increase of contributions of picophytoplankton to total sequencing libraries of the picoeukaryotic community (70.7% : 83.8%), and the increases of both pico-fraction to the total Chl a (38% : 53%) and the abundance of picophytoplankton (2.09 : 8.76 $\times 10^6$ cells L-1), along with decrease of total Chl a (3.06 : 1.08 μg L-1) and nutrients supplement in September, does not hold the classical assumption that larger phytoplankton would be associated with higher nutrient levels and higher biomass.
As in other oceanic waters, the picoleukaryotic community has distinct compositions and diversities at different water masses in the southern Chuckchi Sea.

- Some species in Trebouxiophyceae and Bathycoccus (Mamiellophyceae) were likely carried by the ACW.
- Prasinoderma (Prasinophyceae), Bolidomonas (Bolidophyceae), Diaphanoeca (Choanoflagellatea) and some species in Chrysophyceae, Dictyochophyceae and Spirotrichea were brought by the BSW.
The abundance of picophytoplankton in the southern Chukchi Sea in 2012 (July: 2.09×10^6, Sep.: 8.76 cells L$^{-1}$) was slightly higher than that in 2008 (July: 1.00×10^6 cells L$^{-1}$) and comparable to that in the Northern Bering Sea in 2008 (July: 3.48×10^6 cells L$^{-1}$) and the central Arctic Ocean in 2010 (August: 4.97×10^6 cells L$^{-1}$)

The picoeukaryote community composition in the southern Chukchi Sea is different from those in both the Central Arctic Ocean and European polar Seas
Publications

- Fang Zhang, Shunan Cao, Yuan Gao, Jianfeng He. Distribution and environmental correlations of picoeukaryotes in an Arctic fjord (Kongsfjorden, Svalbard) during the summer. Polar Research, 2019. In press.

• Shunan Cao, Hongyuan Zheng, Chuanpeng Liu, Huimin Tian, Qiming Zhou, Fang Zhang*. The various substrates of Usnea aurantiaco-atra and its algal sources in the Fildes Peninsula. Advance Polar Science, 2015, 26, DOI: 10.13679/j.advps.2015.4.00
张芳，光应芝，张前前, 何剑锋. 两种北极微型浮游植物的荧光差异性分析. 海洋与湖沼，2013，44(5)：1189-1193.

张芳，何剑锋，郭超颖，林凌，马玉欣. 夏季北冰洋楚科奇海微微型、微型浮游植物和细菌的丰度分布特征及其与水团的关系. 极地研究，2012，24（3）：34-42.

高源，何剑锋，陈敏，林凌，张芳. 北冰洋楚科奇海细菌丰度和生产力的空间分布，海洋学报，2015，37（8）：96-104.

• 刘莹，张芳，凌云，林凌，陶妍，何培民，何剑锋. 2010年夏季白令海浮游细菌的多样性和群落组成分析. 极地研究. 2013, 25(2): 113-123.

• 光应芝，张芳，张前前，蔡明红，何剑锋. 10种极地微藻叶绿素荧光特征分析，极地研究，2011，23(3): 183-188.

• 林凌，何剑锋，张芳，蔡明红，陈建芳，赵云龙. 2008年夏季白令海和北冰洋异养浮游细菌丰度和分布特征. 海洋学报，2011, 33 (2) : 166-174.

• 何剑锋，崔世开，张芳，何培民，林凌. 极地海洋微食环研究现状与展望. 生态学报，2011，31(23): 7279-7286.

Thanks for your attention!