PAG & AOS 2018

Hajo Eicken International Arctic Research Center University of Alaska Fairbanks Fairbanks, AK 99775-7340, USA e-mail: heicken@alaska.edu

- Co-Chairs Organizing Committee Arctic Observing Summit 2018
 - Peter Schlosser, Columbia University & Earth Institute, USA
 - Koni Steffen, ETH Zurich, Switzerland
 - Jan-Rene Larsen, SAON
 - Maribeth Murray, Arctic Institute of North America

Arctic Observing Summit: Goals

- Provide community-driven, science-based guidance for the design, implementation, coordination and sustained long-term (decades) operation of an international network of Arctic observing systems that serves a wide spectrum of needs
- Create a forum for coordination and exchange between academia, government agencies, local communities, industry, non-governmental organizations and other Arctic stakeholders involved in or in need of long-term observations

PAG & AOS

- How can PAG activities benefit from involvement with AOS and vice versa?
- PAG has made great strides in communicating & planning of research cruises, identifying gaps, establishment of repeat stations (DBO) and serving as a forum for exchange
- Pacific Arctic sector is a region of rapid change & rapidly evolving issues & interests that cut across disciplinary foci

AOS 2018 Themes

- Need for Observing System
- Societal Benefits Long & short term perspective (e.g., UN-SDG, emergency response)
- System Implementation
- Funding/support models
- Optimization of existing platforms & technologies
- New technologies to increase efficiency & impact
- Role of data management

Operating Observing Systems

- Success stories & lessons learned
- Use
 - Use of data & information relevant for business case
 - Data Management in support of public and private interests
 - Technology in support of public and private interests
 - Entrepreneurship and sustained observations

AOS 2018 Themes

- AOS 2018 Working Group 2 *Implementation* is of particular relevance to PAG
- Prior to and at AOS, WG 2 is reviewing different observing activities with respect to
 - Maturity and sustainability
 - Connection to global/regional efforts
 - Consistency across regions and sub-systems
 - Governance structures
 - Resources needed
- Relevant examples: Benthic in vertebrate abundance

AOS 2018 WG 2 – Example

• Claire Eaton, University of New Hampshire

User base for the observing system & end-to-end "network"

AOS 2018 WG 2 – Example

• Claire Eaton, University of New Hampshire

Tabular Organization (Societal benefit > data repository)

Variable: Benthic invertebrate abundance and distribution

Societal benefits	Applications	Phenomena	Essential variable	Observing platform	Observing network	Data repository
 Climate Fundamental Understanding of Arctic Systems Marine and Coastal Ecosystems and Processes Marine economy Resilient livelihoods 	 Climate analysis & assessment Ocean forecasting Ecosystem assessment Biodiversity assessment Sustainable management Assessing human impact on ocean 	 Ocean productivity Food webs Habitat modification 	 Benthic invertebrate abundance and distribution 	 Satellites Moorings Ships of opportunity Ship-based time series Acoustic network 	 DBO AOOS IOOS Individual scientists AMBON Community-based monitoring networks 	 NSF/AON NOAA SERC (private) US FWS State FWS

Scores from 1 to 6 (low – 1; high – 6) In color scale: score 1, score 2, score 3, score 4, score 5, score 6.

Sustainability	Implementation costs		
Scientific and expert support	Costs for installation		
Funding support	Costs for maintenance and development		
Site representativeness	Costs for data management		

AOS 2018 WG 2 Implementation

- Please join us at AOS 2018 to complete assessment of key observing system implementation approaches, with focus on observing requirements
- Unable to join? Please review Brief Statements & other documents on AOS 2018 Website
- Products, calls to action, and recommendations from AOS 2018 will feed into Arctic Science Ministerial (ASM-2) in Oct 2018
- Questions? Please e-mail heicken@alaska.edu