Interannual variability of dissolved organic carbon

Jinyoung Jung¹, Sun-Yong Ha¹, Youngju Lee¹, Min-Sub Kim², Eun Jin Yang¹, Kyung-Hoon Shin³, and Sung-Ho Kang¹

¹Korea Polar Research Institute, Yeonsu-gu, Incheon 21990, Republic of Korea
²National Institute of Environmental Research, Incheon 22698, Republic of Korea
³Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea

Pacific Arctic Group 2017 Fall Meeting, PMEL/NOAA, WA, USA

r Research

Why dissolved organic carbon?

Terrigenous organic carbon input by discharge of arctic rivers

arctic rivers

DOC discharge fluxes in

Mackenzie: 1.4 Tg C yr⁻¹ Yukon: 1.5 Tg C yr⁻¹ Ob: 3.05–4.2 Tg C yr⁻¹ Yenisei: 4.69 Tg C yr⁻¹ Lena: 5.6–5.8 Tg C yr⁻¹ Kolyma: 0.46–0.82 Tg C yr⁻¹

(Holmes et al., 2012)

- Early reports suggested that terrigenous DOC from arctic rivers was refractory and that it may not be important for the biogeochemistry of the Arctic Ocean.
- ✓ However, recent studies have shown terrigenous DOC removal to be active but slow process (Hansell et al., 2004; Cooper et al., 2005; Holmes et al., 2008; Letscher et al., 2011).

If DOC from arctic rivers is indeed more labile than previous thoughts, continuous monitoring of organic carbon in the Arctic Ocean is required.

Research stations surveyed in 2015 and 2016

ARA07B cruise: August 6–19, 2016 (31 stations)

CTD rosette system

The objectives of this study

- (1) Investigate the distributions of dissolved organic carbon in the Chukchi Sea
- (2) Estimate the contribution of terrigenous dissolved organic carbon to the observed dissolved organic carbon
- (3) Understand dynamics of dissolved organic carbon in the Chukchi Sea

Distributions of DOC and POC in 2015 and 2016

Comparison of surface water characteristics between 2015 and 2016

Comparison of surface water characteristics between 2015 and 2016

Freshwater tracer

To distinguish freshwater sources, δ^{18} O was used. $1 = f_{river} + f_{sea \ ice \ melt} + f_{seawater}$

$$\begin{split} \delta^{18}O &= f_{river} \; x \; \delta^{18}O_{river} + f_{sea\;ice\;melt} \; x \; \delta^{18}O_{sea\;ice\;melt} + f_{seawater} \; x \\ \delta^{18}O_{seawater} \end{split}$$

Salinity = $\mathbf{f}_{river} \times \mathbf{S}_{river} + \mathbf{f}_{sea \ ice \ melt} \times \mathbf{S}_{sea \ ice \ melt} + \mathbf{f}_{sea \ water} \times \mathbf{S}_{sea \ water}$

- End-member: river water (salinity = 0, $\delta^{18}O = -20.3$), sea ice melt (salinity = 4.5, $\delta^{18}O = -1.9$), seawater (salinity = 35, $\delta^{18}O = 0.3$) (Mathis et al., 2007).
- Marine DOC = Measured DOC (f_{river} x DOC_{river} + f_{sea ice melt} x DOC_{sea ice})
- DOC_{river}: 350 μ M C and DOC_{sea ice}: 33.4 μ M C

Differences of surface water characteristics between 2015 and 2016

Heterotrophic bacteria vs. riverine DOC

Heterotrophic bacteria [cells/mL] @ Depth [m]=first

2015

Heterotrophic bacteria [cells/mL] @ Depth [m]=first

2016

- Heterotrophic bacterial abundance in surface water in 2015 was higher than that in 2016.
- Relatively low heterotrophic bacterial abundances were observed in the stations where riverine DOC concentrations were high.

Distributions of bacterial abundance and DOC

Relationships between bacterial abundance and DOC

- In 2015, DOC concentrations observed in the northern Chukchi Sea showed a positive relationship with bacterial abundance, suggesting that DOC was bioavailable and used by bacteria for their growth.
- In contrast, in 2016, bacterial abundances were lower than those in 2015 although there
 was a positive relationship between bacterial abundance and DOC concentrations,
 suggesting that DOC observed in 2016 was more refractory.

Bacterial abundance vs. marine and riverine DOC

Future plan

- Analysis of DOC samples collected in 2017
- Excitation emission matrix (EEM) spectroscopy analysis for the samples collected in 2015, 2016, and 2017 to estimate sources of DOC (e.g., protein-like, humic-like).

Excitation emission matrix (EEM) spectroscopy analysis