Biochemical response on sea ice reduction in the PACEO Line

Eun-Jin Yang, Youngju Lee, Junho Min, Jinyoung Jung, Kyoung-Ho Cho, Jisoo Park, Hyung Sul La, Sung-Ho Kang <KOPRI K-AOOS Ecosystem Programs>

2017 ASSW, Prague, 2th April

Arctic sea ice is melting

(NASA/Goddard Scientific Visualization Studio)

Increase in primary production

Annual primary production

Open water area

Duration of the open water season

(Arrigo and van Dijken, 2011)

Under-ice phytoplankton blooms

Modeled chl-a

MODIS chl-a

Arctic is warmer and less saline = less extensive and thinner ice

How does sea ice variability (melting/formation and recent inter-annually rapid decrease) affect plankton dynamics (i.e. composition, biomass, physiology and trophic interaction) and chemical process ?

Impact of Climate Change on Arctic Sea Ice (http://www.awi.de)

Objectives

- Understanding the influence of sea ice reduction on the plankton community, microbial composition, nutrient, DOC and POC distribution in the Chukchi and the East Siberian Seas.
- Comparison between 2012, Aug & 2015, Aug

Sea ice concentration

August, 2012

August, 2015

(Data source : http://www.iup.uni-bremen.de:8084/amsr2data/)

Physical variables

Nutrient and DOC concentration

2015, Aug.

Principal component analysis (PCA)

on the environmental variables in surface layer

Phytoplankton biomass & Size group

2012, Aug. Pico size chl-a % Surface chl-a Micro size chl-a % **Depth-averaged** (<2µm) (µg L⁻¹) chl-a (µg L⁻¹) (>20µm) Schla_P% @ Depth=first 0.3 0.25 2.5 80 80 78°A - 2 0.2 60 76°N 1.5 0.15 7600 0.1 74°N 170°E T4°N 0.05 0.5 170°E 180°E 180°E 180°F 160°W 170°W 180°F 160°V 170°W 170°W 2015, Aug. Pico size chl-a % Micro size chl-a % **Depth-averaged** Surface chl-a (<2µm) chl-a (µg L⁻¹) (>20µm) (µg L⁻¹) Schla_P% @ Depth=first 0.3 100 0.25 78°N 80 0.2 60 60 76°N 76°A 760 0.15 40 40 0.1 74°N 74°N 74°N 170°E 170°F 0.05 160°W 180°E 180°E 180°E 160°W 160°W 170°W 170°W 170°W 180°E 160°V 170°W

Vertical structure of Chl-a

Fluorescence

Chl-a ((µg L-1) Fluorescence Depth 180°F Distance (km) 170°W Micro sized -Chl-a (%) Chl-a ((µg L-1) Fluorescence 82° ⁴⁰ Depth 60 Distance (km) Micro sized -Chl-a (%)

600 ...

...

Phytoplankton groups

2012

2015

KOPR

Statistical difference between two years (t-test)

SIC *** MLD *** SCM depth * Diatoms ** Pelagophytes **

* p<0.05 ** p<0.01 *** p<0.001

--Chl-a

Cluster groups of phytoplankton community structure

Group A: Diatom and cryptophyte Group B: diatom Group C & D : prymnesiophyte and dionoflagellate

Similarity

Microbial community & POC

170°W

2012, Aug.

Summary

	August 2012	August 2015
Environmental variables		
Sea ice concentration***	Lower	Higher
SST	Slightly higher	Slightly Lower
Surface nutrient ***	Nitrate higher Phosphate lower	Nitrate lower Phosphate higher
DOC***	Higher	Lower
MLD***	Deeper	Shallower
Phytoplankton		
Phytoplankton biomass	A little difference of the average phytoplankton biomass	
Size structure***	Pico-size dominated	Micro-size dominated
Dominant phytoplankton**	Prymnesiophytes, prasinophytes, dinoflagellates, cryptophytes	Diatoms
Heterotrophic community and POC		
Heterotrophic bacteria	Higher	
Microzooplankton	Higher	
РОС	Higher	

- Phytoplankton groups may appear to be controlled mainly by seeding from sea ice -> Diatom composition necessary !!
- > Trophic interaction in planktonic food web
- The east-west gradients of some abiotic and biotic variables need to be taken into consideration for future study on the effect of water mass on bio-chemical components
- Long-term continuous monitoring using mooring system attached biochemical sensors (Chl-a, PAR, nitrate..)

