Modeling Ice-Ocean-Ecosystem in the Bering-Chukchi-Beaufort Seas:

Using IPY (2007-2008), RUSALCA 2004 and 2009 measurements Jia Wang NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan USA

Haoguo Hu, Ayumi Fujisaki-Manome University of Michigan Ann Arbor

Bob Pickart, WHOI

PAG Fall Meeting, October 28-29, 2014, KOPRI, Incheon, Korea

Modeling Bering-Chukchi Sea ice-ocean and ecosystem using CIOM

- CIOM with fully dynamics and thermodynamics, multiple category ice thickness (ridging)
- 3.8km and 21 level
- 6-hourly or daily forcing
- 3 configurations:

Bering Sea only (7-12km), Chukchi only (3.8km), Bering-Chukchi Sea (3.8-12km)

- Hypotheses test/RUSALCA synthesis
- Realistic simulation

Modeling coastal circulation and T/S properties in the Chukchi Sea using CIOM: RUSALCA Years: 2004, 2009

Wang et al. (submitted)

Coupled Ice-Ocean-Ecosystem Model in the Bering-**Beaufort-Chukchi Seas (IPY)**

surface current (3/08) surface current (7/08) Modeled ice thickness (3/08) 72°N 72°N 68°N 68°N 68°N 0.300 m/s 0.300 m 64°N 64°N 64°N 60°N 60°N 60° 56°N 56° 52°N 52°1 165°E 175°W 165°W 165°W 175°E 165°E 175°E 175°W 175°W 165°W 1.80 -2010 Mean SL 007-2008 Measured SL 1.60 More eddies 1.40 1.20 Siberia Alaska 65° N Few eddies 65° N 1.00 Yukon River 0.80 0.60 0.40 0.20 **Bering Sea** 55° N 55° N 0.00 0 N E M M J D A J 2008 Gulf of Alaska Simulated sea ice area (black line) and satellite-measured sea ice area (blue) over 175° W 170° W 165° W 160° W 155° W

70° N

km

aufort Gyre

Bering Shelf Water North Slo

larch Ice Edge M

eptember Ice Edge Maximum and Minimum Extents

Atlantic Wate Siberian Coastal Curre

the entire Bering and Chukchi Seas for 2007-2008. The red line denotes the 11-year average area and the red vertical bars denote the maximum and minimum ice areas during 2000-2011. (Wang et al. 2013, JGR)

Verification of CIOM using 2004 RUSALCA Data (T) in the Bering-Beaufort-Chukchi Seas (work in progress)

CIOM-simulated ice-ocean system

Sea Surface Temperature(o^C)

Verification of CIOM using 2004 RUSALCA Data (T&V) in the Bering-Beaufort-Chukchi Seas

Depth-averaged currents in the Chukchi Sea 2009

Pacific Arctic pressure head + Wind forcing

Observation

➔ Transport reversals

Table: Water transports in the Chukchi Sea in 2009, positive and negative values denote flowing into and out of Chukchi Sea, respectively.

Unit: Sv	Mean	STD	/STD	Max	Min	/ Min	
Barrow Canyon	0.44	0.61	0.73	1.37	-1.42 (westward)	0.97	0.45 (Itoh et al. 2013)
Central Channel	0.27	0.30	0.89	1.12	-0.57 (southward)	<u>1.97</u>	0.2 ± 0.1 (Weingartner et al. 2005)
Herald Canyon	0.25	0.36	0.68	0.84	-0.91 (southward)	0.92	0.1-0.3 (Woodgate et al. 2005)
Long Strait	0.06	0.42	0.13	1.13	-1.15 (eastward)	0.98	
Bering Strait	1.00	0.79	<u>1.26</u>	2.47	-0.98 (southward)	<u>2.51</u>	0.8 ± 0.2 (Woodgate et al. 2006)

Modeling ice-ocean system response to storm passage in the Beaufort Sea using CIOM

Bai et al. (2015, Deep Sea Res, II)

Calculated net surface heat flux (W/m², positive upward) with wind vectors overlain during the passage of the cyclone on 25-27 February 2007.

d vertical sections of winter mean zonal velocity (contour, unit: cm/s) and ure (shaded) and salinity (black line) along 156 5W, 155W and 152W

odeling coastal circulation and landfast ice in the Beaufort Sea using CIOM

ang et al. (2014, JGR)

Sea Surface Elevation and Circulation

2. Model-simulated upmost 50-m averaged ocean velocity and sea surface height ion in color with units of meters) on July 10, 2002, consistent with the schematic circulation pattern (Fig. 1).

all-scale meso-scale eddies (~20-30km) are caused by baroclinic ability with Interaction of negative sloping topography (Ikeda 1983-theory; ng and Ikeda 1997-confirm the theory): Favoring anti-cyclones

. Sea ice cover and ocean circulation in the Beaufort Sea coastal area on (from left a) August 10th, b) August 16th, c) August 28th, d) September 6th, e) September 15th,

e 10. The CIOM-simulated January to June climatological landfast ice extent (from 1996-2004, black shaded)

D: Arctic Dipole Anomaly (DA) is the major forcir to accelerate Arctic summer sea ice decline

is the 2nd EOF mode of Sea Level Pressure Anomaly north of 70N (Wang et al. 2009)

-0.8 -0.6 -0.4 -0.2 -0.1 0.1 0.2 0.4 0.6 0.8 1 1.2

13. Composite sea ice thickness (in meters) composite mean in the Beaufort and Chukchi seas in March during +DA –DA (b) phases, simulated by the CIOM, h diff denotes the sea ice thickness difference between the -DA (b) and

Summary

- CIOM is capable of simulating sea ice and ocean in the Arctic
- CIOM is coupled to the NPZD model
- CIOM captures some landfast ice features, but ack of anchoring process
- CIOM can be used to simulate ice-ocean system esponse to storms

odeling ice-ocean-ecosystem in the Bering and Chukchi Seas using CIOM: RUSALCA Years: 2007-2010

ang et al. (2013, JGR), Hu et al. (in prep)

Coupled Ice-Ocean-Ecosystem Model in the Bering-Beaufort-Chukchi Seas (IPY)

e 2. (a) Observed average (May-Sep 2009, SeaWiFS. The other part of year t included because of sea ice cover and lacking of SeaWiFS data) surface rophyll a. (b) Simulated average (May-Sep 2009) surface Chlorophyll a. Octare not included due to lack of satellite data, lot of area was covered by sea ice.

Observed subsurface max chl-a

e 3. Measured Chlorophyll a (µg/L, color filled) and temperature (°C, pur lines) from Aug. 2008-cruise.

4. Chlorophyll a in color and temperature in contour of section AL (see 1 for location), Sep. 2009, RUSALCA cruise.

0.52

0.48 0.44

0.4 0.36 0.32

0.28 0.24 0.2

0.16 0.12 0.08

0.04

0.52

48

.44

0.36

0.32

0.28

0.24

12

.04

0.036

175°E 175°W

165°E 175°E 175°W

7. Spatial difference of bloom timing, short wave radiation in black, rature in red, Chlorophyll a in green, nitrate in blue, and sea ice concentration t blue. (a) In Chukchi Sea (191 °W, 70 °N), (b) in Bering Shelf (170 °W, 59 °N), Bering Basin (175 °W, 55 °N), and (d) Chlorophyll a and sea ice concentration

7. Spatial difference of bloom timing, short wave radiation in black, rature in red, Chlorophyll a in green, nitrate in blue, and sea ice concentration t blue. (a) In Chukchi Sea (191 °W, 70 °N), (b) in Bering Shelf (170 °W, 59 °N), Bering Basin (175 °W, 55 °N), and (d) Chlorophyll a and sea ice concentration anges in sea ice along the Arctic Northeast Passage since 1979: Results from remote sensing data

, R. J. Wang et al. (CRST, 2015)

Ilaborated with Polar Research Institute of China-PRIC)

SMI-derived Arctic sea ice edges in September averaged from 1981 to 2010 and those

Ice thickness distribution

AO/DA vs open period in NEP

	Chukchi	East Siberian	Laptev	Kara	Barents
AO_w vs. Open period	n.s.	0.41*	n.s.	n.s.	n.s.
AO_sp vs. Open period	n.s.	0.49**	n.s.	n.s.	n.s.
AO_su vs.Open period	n.s.	n.s.	n.s.	-0.46**	n.s.
AO_a vs. Open period	n.s.	n.s.	n.s.	n.s.	n.s.
DA_w vs. Open period	n.s.	n.s.	n.s.	n.s.	n.s.
DA_sp vs. Open period	n.s.	0.49**	0.34*	n.s.	n.s.
DA_su vs.Open period	0.42*	0.49**	0.63***	0.63****	n.s.
DA_a vs. Open period	n.s.	0.49**	0.34*	n.s.	n.s.

tatistical relationship of seasonal average AO/DA indices and the open period defined by 50% ice

Future plan: 2016-2020

orking on progress:

Arctic-CIOM Arctic-FVCOMice

Arctic-CIOM+npzd Arctic-FVCOMice+npzd

Arctic-CIOM Wang, Liu, et al. (2005, JO), Long et al. (2012, JC)

he CIOM-simulated climatological Arctic Ocean surface current (left) and ice

Proposed New Configuration for RUSALCA's Iorthward Expansion, 2015-2020 (Arctic-CIOM)

1 with fully dynamics and dynamics, multiple vice thickness (ridging) 2km in ESS/elsewhere vel urly or daily forcing

- otheses test/RUSALCA nesis
- stic simulation
- oM—**Ph**ysical-**Eco**system

0.1

ERL Proposes to Development of Arctic Unstructured-Grid Models Enhanced Predictive Capabilities for NOAA Arctic Initiative

Working on Arctic-FVCOMice, 2015-2020

- OM with fully dynamics and dynamics, multiple vice thickness (ridging) 2km in ESS/elsewhere
- vel
- urly or daily forcing
- otheses test/RUSALCA
- stic simulation
- oM—**Ph**ysical-**Eco**system
- el-NPZD

n Resolution Regional Model Short-term Predictions (Yamaguchi)

putational Domain and Model Bathymetry

producibility of the whole Arctic Ocean model

2

0.3

3

5

0.3

