PAG Fall Meeting 2015 (KOPRI, Incheon, South Korea)

KOPRI's PACEO Pilot Activities and Plans: Atmospheric and Sea Ice Observations

Joo-Hong Kim Division of Climate Change, Korea Polar Research Institute

Korea Polar Research Institute

Atmospheric and sea-ice state: 2014 vs. 2015

http://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph/

Atmospheric and sea-ice state: 2014 vs. 2015

Topics included

- Updates & Planning
 - Arctic summer research cruise with ARAON (August 2015)
 - Atmospheric observations
 - On-board instruments & Target observations
 - Deployment of sea ice buoys
 - On-ice collaborative activities

On-board atmospheric observing instruments in 2015

<Objectives>

- Surface basic meteorological variables: physical understanding of weather events, numerical weather prediction, assessment of reanalysis data
- Radiosonde launch: physical understanding of weather events, numerical weather prediction, assessment of reanalysis data, cloud and radiation
- Cloud and radiative fluxes: cloud radiative effect on surface, assessment of reanalysis data, physical understanding of weather events

Further strengthening (2017~)

Scientific motivation

Poleward Heat Transport by Atmosphere and Ocean

Ice-Albedo Feedba

Greenhouse Effect of Clouds and Water Vapor

ncreased Mobility of Thinner Ice

PACEO – feedbacks among physical climate components

Wang et al. (2014b, Springer Book, Ch 4)

- An ice/ocean albedo feedback loop and ice/cloud feedback loop are accelerated by a series of intermittent +DA forcings.
- The red arrows are associated with +DA forcing, which applies the positive feedback to the SST/SAT, or negative feedback to the sea ice, causing the unprecedented loss of Arctic summer sea ice and a series of record-breaking ice minima. + and signs denote the positive and negative feedback, respectively. The positive feedback means that a change in one item (say *A*) affects the other item (say *B*), which feeds back so that *A* makes the change in the same direction as the original change.
- Note that associated with +DA, red arrow 1 indicates the northward advection of warmer SAT in the northern North Pacific to the Arctic by the anomalous meridional wind; Red arrow 2 denotes that anomalous meridional wind directly accelerates the TDS, which promotes export of more ice out of the Arctic; Red arrow 3 indicates the direct advection of sea ice by the anomalous meridional wind; and red arrow 4 denotes the warming impact of the ocean heat transport from the Bering Sea promoted by the anomalous northward (or meridional) wind.

KOPR 국지연구소

Adapted from "Planning for New PAG Climate Observations" (PAG 2014 Fall Meeting)

Results from satellite data provide us a nice motivation...

Change in cloud - sea ice relationship? Why?

In the Pacific Arctic Sector, In the middle-to-late 1990s

- Former: Positive (Negative) correlation between S(L)WRF & SIC-> less SEP SIC during more JJA clouds when clouds were more -> LW CRF during summer might have a role in sea ice melting
- Later: Emerging role of SW CRF in sea ice melting

2015 ARAON Arctic cruise (Leg 1)

ARA06B (2 August to 21 August)

Cho et al. (ARA06B Cruise Report)

Cloud observation

- Original plan: three-way observations of shipboard LIDAR, all-sky camera and radiosonde
 - Shipboard DPL did not operate cancelled
- Sky pictures taken by all-sky camera
 - Observing frequency: 15-minute intervals
 - Cloud amounts were retrieved at 30-minute intervals

Radiosonde launch

- Observing frequency
 - Twice daily (00, 12 UTC)
 - 4-times daily (00, 06, 12, 18 UTC) around the ice camp period (18 UTC 11 Aug. ~ 12 UTC 14 Aug.)
- Total number of launch: 50
 - 43 succeeded, 7 failed (Success rate: 86%)
 - Average ascending height: 30 km (mid-stratosphere)
- Striving for on-line data
 - Among 37 launches at 00 and 12 UTC, 29 of them were successfully transmitted to the KOPRI server
 - Data transmission: 1st data (surface to 100-hPa) during ascent, 2nd complete data after termination

Radiosonde profile

Preliminary comparison with available reanalysis datasets

Further strengthening (2017~)

YOPP (Year of Polar Prediction)

- An extended period of coordinated intensive observational and modelling activities, in order to improve prediction capabilities for the polar regions and beyond, on a wide range of time scales from hours to seasons
- A key element of the WWRP-PPP

We are about to submit our application form for YOPP endorsement.

WORLD METEOROLOGICAL ORGANIZATION

WORLD WEATHER RESEARCH PROGRAMME

Activities on sea ice

Sea ice buoy deployments for physical observation

<Objectives>

- To measure in-situ physical parameters of atmosphere, ice and ocean autonomously throughout the annual cycle
- To understand key physical processes operating between and within atmosphere-ice-ocean
- To study the energy balance at the atmosphere-ice-ocean interface

KOPRI-SAMS drifting buoys (Drifter 01 – 10)

(OPR) 국지연구소

Status Monitoring

(As of 2015-10-18)

•	Drifter 01 300234062941850	81 28.1820 81.46970	-172 26,9928 -172,44988	02:23 hours ago	10.33 (V)
•	Drifter 02 300234062940880	81 26.3718 81.43953	-171 41.2218 -171.68703	02:23 hours ago	10.28 (V)
•	Drifter 03 300234062949830	81 23.6190 81.39365	-171 15.7542 -171.26257	07:23 hours ago	10.41 (V)
•	Drifter 04 300234062947770	81 22.8930 81.38155	-171 29.3724 -171.48954	02:23 hours ago	10.24 (V)
-	Drifter 05 300234062945880	81 10.6662 81.17777	179 43.1652 179.71942	25 days ago	10.05 (V)
•	Drifter 06 300234062946880	81 25.6176 81.42696	-173 3.4260 -173.05710	08:23 hours ago	10.39 (V)
•	Drifter 07 300234062943850	81 22.7904 81.37984	-171 45.4128 -171.75688	07:23 hours ago	10.1 (V)
•	Drifter 08 300234062329110	81 26.6076 81.44346	-173 2.7372 -173.04562	08:23 hours ago	10.39 (V)
•	Drifter 09 300234062949850	80 45.1188 80.75198	173 17.7558 173.29593	66 days ago	10.54 (V)
•	Drifter 10 300234062941760	81 28.3812 81.47302	-173 0.6900 -173.01150	02:23 hours ago	10.41 (V)

Sea ice dynamics - effects of scales on deformation

Phil Hwang, SAMS, Pedro Elosegui, ICM-CSIC/MIT, Jeremy Wilkinson, BAS

Small scale (< 1km) deformation

TerraSAR-X image 28/Nov/2014 ©DLR

TerraSAR-X image 20/Jan/2015 ©DLR

Early January the buoys deploy ed on the floe detected "displac ement" (see red arrow above), i ndicating deformation of the fl oe. SAR images taken across thi 's period show significant defor mation of the floe (see yellow r ectangles in the images on the right).

Large scale (> 1km) deformation

- How atmospheric forcing is related to sea ice defo rmation at different scal es?
- What is the spatial and t emporal correlation acro ss the scale?
- Can we parameterize ice deformation across the s cale?

KOPRI-SAMS IMB 01

KOPR

극지연구소

Temperature chain died at 20150922-00h~06h

BAS-type IMB (011 & 012) with radiation sensors

- Two new-type buoys with radiation sensors were experimentally deployed in different melt ponds
 - IMB 011 : deployed in saline pond (Salinity: 20 psu)
 - IMB 012 : deployed in fresh pond (Salinity: 2.3 psu)
 - Objectives
 - In order to capture thermal and thickness variation of the pond water and ice all together throughout the annual cycle

IMB012

• To understand the effect of pond salinity on evolution characteristic during transition (melting/freezing) season

IMB011

Ocean heat flux

"The surplus heat needed to explain the loss of Arctic sea ice during the past few decades is on the order of $1\sim 2$ W m⁻². Observing, attributing, and predicting such a small amount of energy remain daunting problems."

Kwok and Untersteiner (2011)

극지연구소

Kwok and Untersteiner (2011)

 Sensitivity of equilibrium thickness to ocean heat flux variati ons

Evolution of sea ice - energy balance

- Inner energy balance: vertical gradient of conductive heat flux(F_c) and absorbing insolation(I₀)
- Bottom energy balance: ocean heat flux(F_w), conductive heat flux(F_c), latent heat flux due to phase change(F_I), specific heat flux due to ice temperature change (F_s)

 $F_w - (F_c + F_1 + F_s) = 0$ Estimation of ocean heat flux by "Residual Method" McPhee and Untersteiner (1982)

$$F_c = k_i(S_i, T_i) \frac{\partial T_i}{\partial z} \qquad F_l = -\rho_i L_f(S_i, T_i) \frac{\partial h_i}{\partial t} \qquad F_s = \rho_i c_i(S_i, T_i) \frac{\partial T_i}{\partial t} \Delta d$$

Example of IMB temperature profile (Deployed in March 2014)

Estimation of ocean heat flux using "residual method"

$$F_{w} = (F_{c} + F_{l} + F_{s}) = 0$$

$$F_{w} \approx k_{i} \frac{\partial T_{i}}{\partial z} - \rho_{i} L_{f} \frac{\partial h_{i}}{\partial t} + F_{s}$$

$$F_{w} \approx k_{i} \frac{\partial T_{i}}{\partial z} - \rho_{i} L_{f} \frac{\partial h_{i}}{\partial t} + F_{s}$$

$$F_W
angle \sim \left\langle k_i \frac{\partial T_i}{\partial z} \right\rangle - \left\langle \rho_i L_f \frac{\partial h_i}{\partial t} \right\rangle \qquad < \cdot > : \text{Time Average}$$

- Period 1 (14~16) - (18~20) ~-4 W m⁻² - Period 2 (6~9) - 0 ~7 W m⁻²

Natural hazard

IMB 012 temperature chain was broken end of August highly likely by a visitor.

Chain temperature evolution

22 42 62 62													***	9.580			1	<u>Ú MAR</u>	ŝ.	51 E.M.		Real		<u>a ma</u>	C.S.O.B.							a tar
02 22 42 162																								ан. 1910 - С.								-
02 22 42 62												i -																				
32 22 42 82																	1															
07 177 142 167												l l li dedan tan	an an an	ta ata ana a	Martina da series		-		e setes						en derstader	and the second				i an		
32 42									1 11	1		1	an seenn	er senaer	Constant Co	are set the set of the	an nas	an want di serangan A	and the second sec	A Second	an sa		in second			in the set	1.2	e se a se	e e angel a la m		nam Galeson	
2015-08-13 03h	2015-08-15 031	2015-08-17 03h	2015-08-19 03h	4ED 12-BO-STOZ	2015-09-23 03h	2015-08-25 035	2015-08-27 031	2015-08-29 03h	2015-08-31 03h	2015-09-02 031	2015-09-04 03h	2015-09-06 03h	2015-09-08 03h	2015-09-10 03h	460 (11-60-510)	2015 09-14 03h	2015-09-16 03h	2015-09-18 041	2015-09-20 04h	2015-09-22 04h	7015-DG-5102	2015-09-26 04h	490 BZ 60-ST0Z	2013-09-30 034	2015-10-02 05h	2015-10-04 05h	2015-10-06 05h	2015-10-08 06h	2015-10-10 06h	100 21-01-5102	2015-10-14 06h	2015 10 16 074

-0.2

-0.6

IMB 011

- Last communication: 8 days ago
- Frozen and covered by snow
- Still Working fine!

Most recent discernible webcam image

Autonomous platform on sea-ice

- Continue buoy deployments through international collaborations
 - BAS, SAMS, CRREL, ONR, CSIC, OUC, UPMC, WHOI etc.
- Develop challenging scientific questions can be solved by this effort
 - Melt pond parameterization, Recovery of salinity profile, etc.

Thank You

