Update of 2015 field activities & preliminary 2016 plans : Republic of Korea

Eun Jin Yang and Sung-Ho Kang Division of Polar Ocean & Environment Research KOPRI


28-29 October 2015

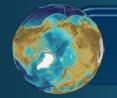
Pacific Arctic Group Fall Meeting, KOPRI

Korea Polar Research Institute

Korean Arctic Ocean Cruise track

Typical expedition periods: from the end of July to the end of September

HH8


2015 KOPRI Arctic Research Activity

DMC

OPR

2015. 8. 1 ~ 9. 10

in

2015 KOPRI Arctic Cruise (1st leg)

- Ocean and geophysics study
- Aims of the cruise:

- To investigate the structure and processes in the water column and sub-bottom layers around the North Bering Sea, Chukchi Sea, and the North site of the East Siberian Sea in rapid transition.

- To understand sea ice dynamics and sea ice ecosystem
- Period: 2015. 8.1 8.22 (from Nome to Barrow)
- Chief Scientists: Dr. Eun Jin Yang
- Participating nations: Korea, US, China, Japan, UK, France, Spain,

and India

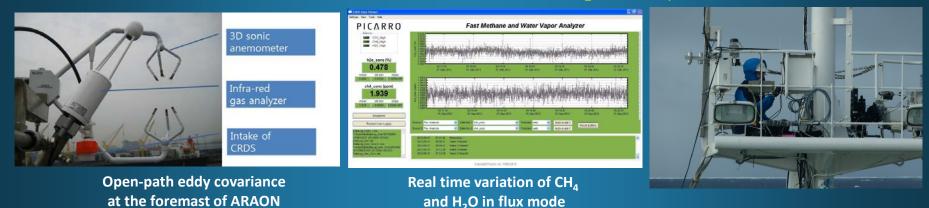
2015 Arctic survey (1st Leg)

(OPR)

2015 Araon Arctic Cruise (ARA06B) 1 August ~ 22 August

Total 8 counties, 83 participants

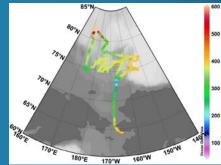
2015 Arctic survey 1st Leg (ocean and geophysics study)



- North Bering Sea
 (DBO 3)
- Chukchi Sea
- East Siberian Sea &
 Mendeleev Ridge
- Sea Ice station
- Ocean mooring station
 - KOPRI (deploy)
 - TUMSAT (recover)

Atmospheric Observation

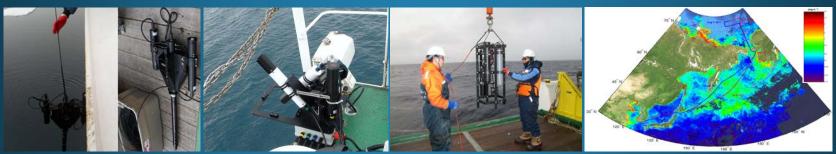
• Direct measurements of Air-Sea Greenhouse Gas Fluxes (CO₂ and CH₄)


Chemistry in water column

- Pursuing spatial and temporal variation of CO₂ system in the Arctic Ocean
- Behavior of nutrients (NH₄, NO₂+NO₃, PO₄ and SiO₂)
- Characteristics of dissolved and particulate organic mattter (DOM and POM)

Analytical system for DIC and TA

Dissolved *p*CO₂ along the track



TOC-TN analyzer

Satellite Remote Sensing

Ocean Color Remote Sensing (Ocean Optics Measurement)

Hyper-spectroradiometer Above water spectroradiometer

APC deployment

Hydrographic Survey

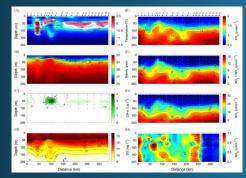
Water mass distribution & characteristics 0

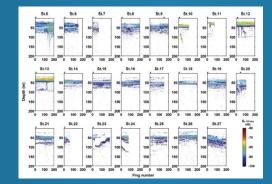
CTD & LADCP

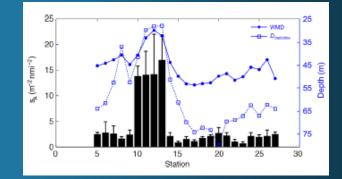
Ocean Mooring

Microbes/Plankton Ecology

- Distribution of bacteria and virus and community structure
- Species compositions of phytoplankton , chlorophyll a concentration and primary production
- Abundance and community structure of heterotrophic protists
- Mesozooplankton community and grazing impacts on phytoplankton biomass


Phytoplankton physiology


- To understand the photosynthetic characteristics of phytoplankton
 - -> Phytoplankton physiology (photochemisty) parameters using a Fluorescence Induction and Relaxation (FIRe II) system



Bioacoustic surveys

- Variations in the sound-scattering layer that were reflected from the mesozooplankton
- Spatial and vertical distribution of dominant mesozooplankton using EK 60

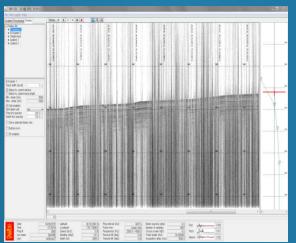
[Spatial variation of Arctic copepods over Northwind Ridge]

KOPRI ocean mooring system

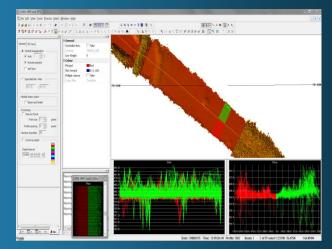
- Chukchi Sea and East Siberian Sea
- ADCP, Microcat, Sediment trap, RCM, AZFP

KAMS-1

ESS ChS 840 Top: ~40 m Top: ~30 m MicroCAT1: ~42 MicroCAT1: ~32 ^mT-logger1: ~45 m ^mT-logger1: ~35 m T-logger2: ~50 m T-logger2: ~40 m MicroCAT2: ~50 MicroCAT2: ~70 m T-logger3: ~75 m ^mT-logger3: ~85 m T-logger4: ~100 m MicroCAT3: ~100 m MicroCAT3: ~120 m T-logger4: ~125 m T-logger5: ~150 m T-logger5: ~150 m 🔿 🖀 🔿 ADCP(300 kHz): ~170 m AZFP: ~175 m MicroCAT4: ~171 m 729 MicroCAT5: ~200 m MicroCAT4: ~176 m T-logger6: ~200 m T-logger6: ~225 m T-logger7: ~250 m T-logger7: ~250 m BARROW 11 680 ADCP(150 kHz): ~300 m ST: ~320 m MicroCAT5: ~301 m T-logger8: ~321 m 64000E ST: ~320 m RCM: ~325 m AOON T-logger8: ~321 m VITROVEX x 3: ~469 m Syntactic foam float: ~471 m 170°E AR: ~483 m AR: ~483 m NOME 150 160°W 180°W Depth: ~500 m Depth: ~500 m 170°W


KAMS-2

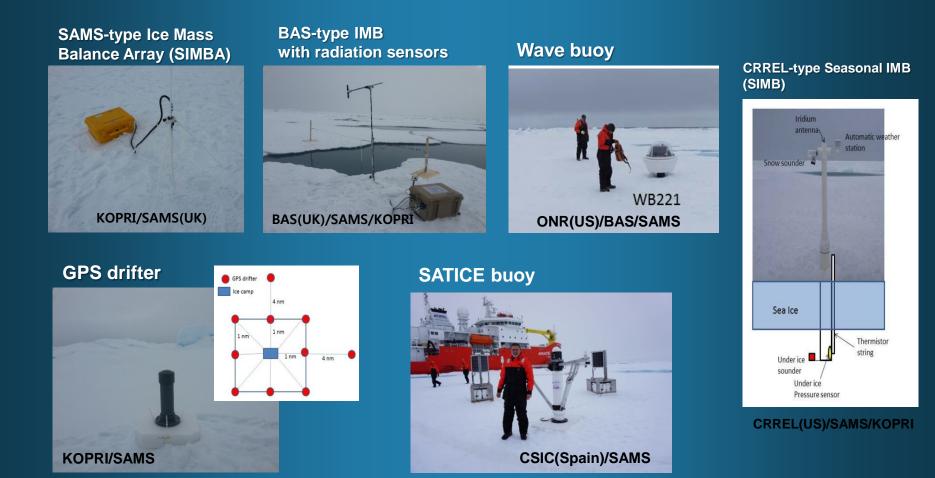
Marine Geophysics


- Swath bathymetry (multibeam siesmic and multibeam echosounder)
- High-resolution subsurface features (Subbottom Profiling)

Red line is a multibeam and SBP survey track

A screen image of SBP recorder

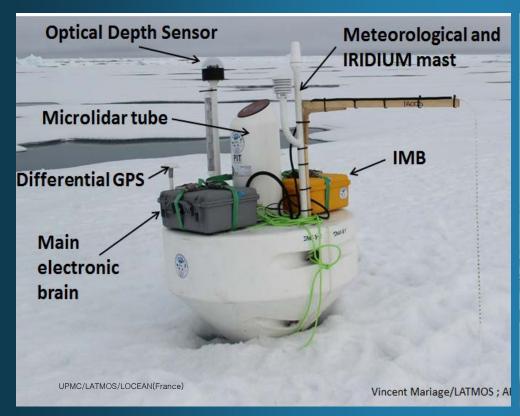
Multibeam data process

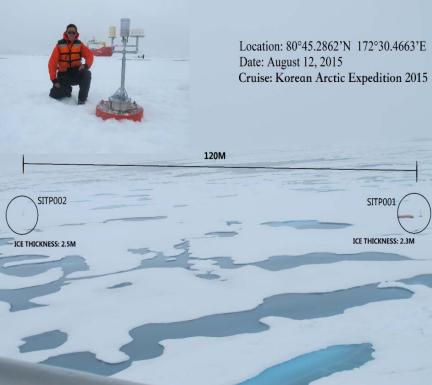

Gravity Survey
 => Data shared with Arctic Gravity Project

Sea ice dynamics

International collaboration : KOPRI-SAMS- BAS-ONR-China-France-Spain

- Buoy deployments for physical observation
 - To measure in-situ physical parameters of atmosphere, ice and ocean autonomously
 - To study the energy balance at the atmosphere-ice-ocean interface





Sea ice dynamics

Ice-Atmosphere-Ocean Observing System(IAOOS)

Smart Ice-Tethered Profilers (SITPs)

France/UPMC-LOCEAN-LATMOS

China (OCU)

Sea Ice_Biogeochemical Study

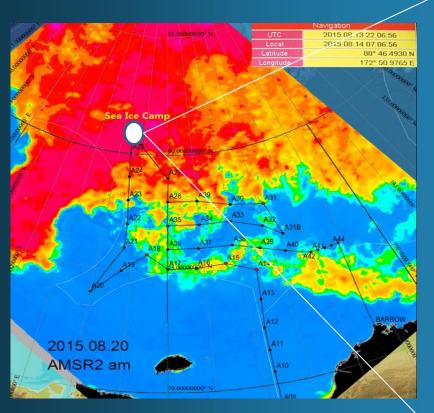
- The effect of changing sea-ice on Arctic marine ecosystem
- Species composition, abundance, and diversity associated with sea ice condition
- Carbon interaction between Sea Ice and water column
- Particle flux and vertical distribution under the sea ice

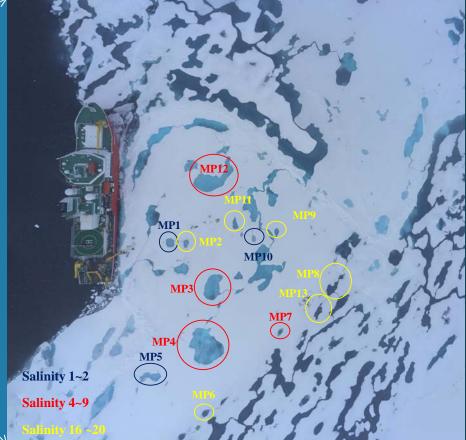
Ice core sampling

Unit: mm Tripod Sea-ice Ice peg 1000 Microcat (T,S), Cyclops (Chl-a), PAR 500 CO2-Pro, Optode (DO) 1000 Weight

PCO₂ monitoring system

Sediment trap, Microcat, CTD,

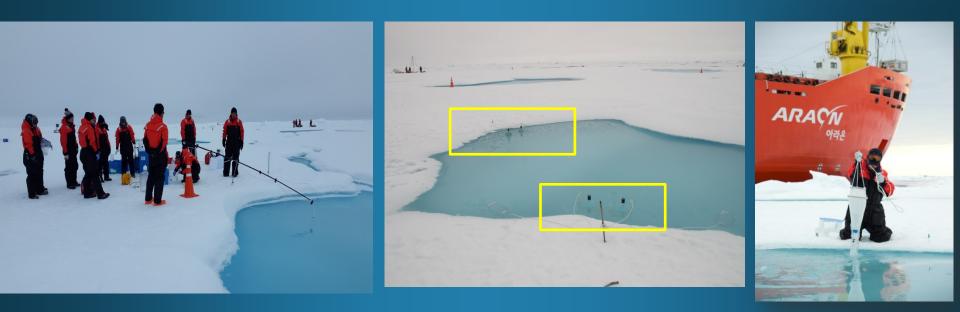



Research components;

- Plankton composition and diversity
- Production and macromolecular of ice algae
- PCO₂ monitoring under sea ice
- Small sediment trap

Melt Pond study

- To define environmental characteristics of various melt ponds on sea ice floes in the Arctic Ocean
- To understand food web interaction associated with environmental variation
- To estimate the carbon contribution of entire sea ice floes in the Arctic Ocean.



Melt Pond study

Research components;

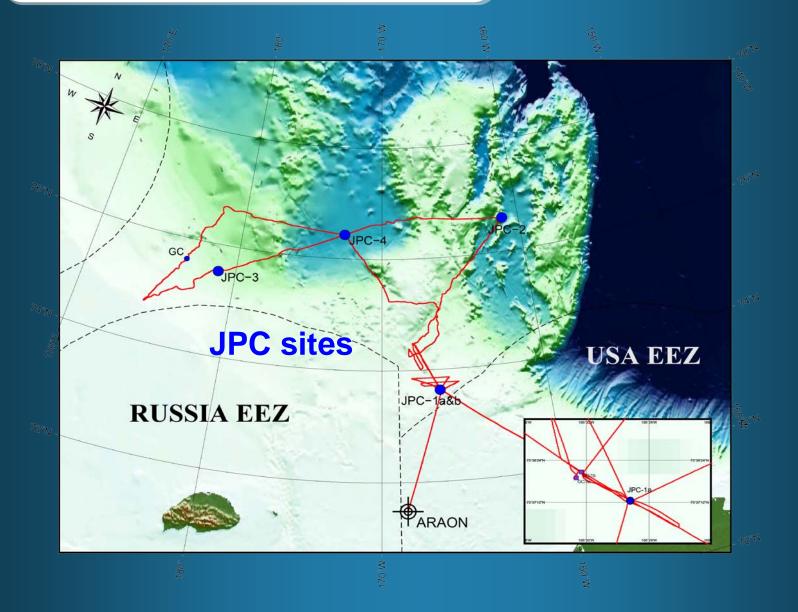
- Plankton composition, diversity and physiology
- Production and respiration of plankton
- Gas interaction between air and surface of ponds
- Biogeochemical parameters (Carbon and Nitrogen ...)

Melt pond sampling

Incubation experiment

Plankton netting

2015 KOPRI Arctic Cruise (2nd Leg)


Paleoceanography program (East Siberian Sea and Chukchi Sea)

Aims of the cruise:

- to take long sediment cores with high-resolution paleoceanographic records using JPC system
 - to reconstruct Quaternary glacial history in the western Arctic
 - to establish further precise stratigraphic records in the western Arctic during the Quaternary
- to acquire Multi-beam together with SBP and Sparker data from the shallow E. Siberian-Chukchi sea continental margin
 - Bathymetric mapping for seafloor morphology combined with sub-bottom reflection profiling (SBP) for geometry of sedimentary sequences and seismo-stratigraphic correlations
- Period: 2015. 8.25 9.9 (from Barrow to Nome)
- Chief Scientists: Dr. Seung-il Nam
- Participating nations: Korea, Japan, USA, France and Germany

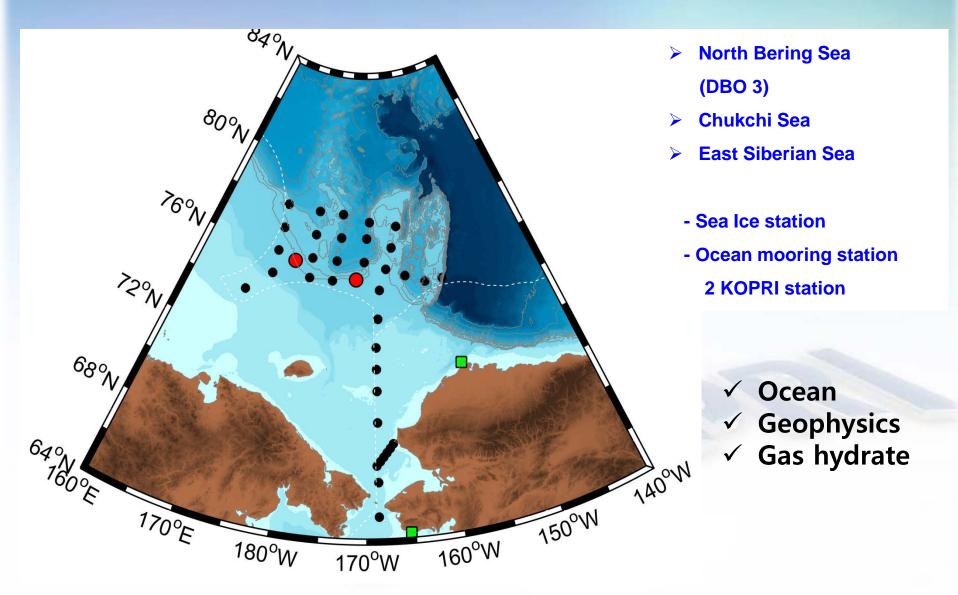
Survey lines and JPC sites

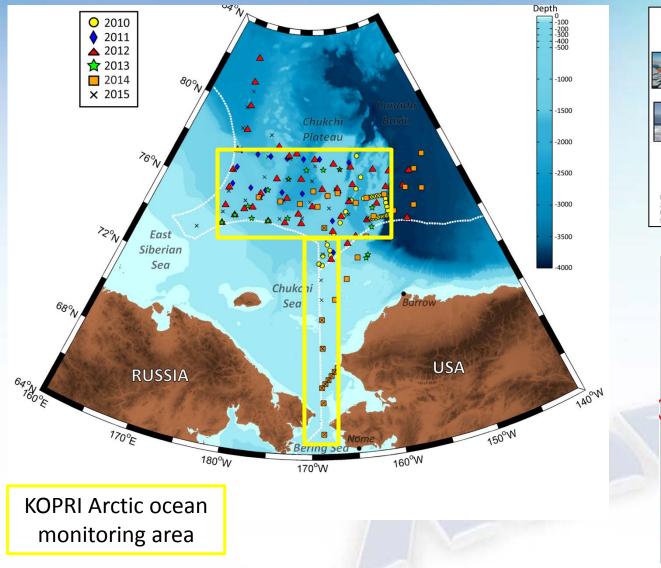
Paleocenography

- Survey line : a total of 2,467 nm (3,947 km)
- Multi-beam & SBP
- 13 XCTD (TUMST, Japan)
- Sparker survey : ca. 500 km
- 4 JPC long sediment core : ca. 42.96 m
 - ca. 14 m long core sediment : 800 ka paleoclimate records
- 3 GC sediments at Chukchi Shelf : ca. 16.37 m
- 7 BOX & 6 MUC

Sediment recovered with JPC corer

Recovery of sediments retrieved with JPC corer


Core	Water depth (cm)	Sediment recovery (cm)	Number of core sections
01A-JPC	100	1040	7
02-JPCg	2077	737.5	5
03-JPC	673.4	1132.5	8
04-JPC	2200	1386	10


2016 KOPRI Arctic research plans

KOPR

Preliminary KOPRI Arctic plan (2016. 8-9)

Future KOPRI Arctic survey

Proposed international Pacific Arctic climate observing sections From K. Shimada Background color: dynamic height at 100dbar relative to 800dbar from Mirai and Louis S. St-Laurent 2008 cruises (Oceanic Beaufort Gyre) Black vectors: average sea ice motion vectors for Nov. 2007-Apr. 2008 (Sea Ice Beaufort Gyre) Symbols: Mooring array in 2012-2013 (TUMSAT/KOPRI/NIPR & WHOI) Moorings Buoys oceanographic stations with upward-looking ADCP/ULS biological stations ITP ice-mass buoy Atlantic Water pathway with upper-ocean CTD chain 🔺 meteo buoy 🛛 🔵 O-buoy ---- glider survey MMP profiler SW1,2 buoy drift trajectory AWI ligh-resolution model domain Beauforts NPEO

ARAON will cover the region from the Chukchi Borderland to the East Siberian Sea and Mendeleev Ridge

Thank you

right@2012, Dae-sik Hwang, all right reserved