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Summary (2014 fall meeting, Seattle)

« For the topic of sea ice and atmosphere,

— KOPRI will enhance meteorological observations and cloud observing
instruments.

— As a legacy of the MIZ program, KOPRI will continue to observe floe-scale
dynamic sea ice deformation with an autonomous platform next year.

— KOPRI atmospheric scientists will participate in N-ICE2015 to study cloud,
turbulence, sea ice energy balance, and atmospheric boundary layer.

— KOPRI atmespheric-physical scientists will aim to have an integrated platform
to study thermodynamic sea ice — atmosphere — ocean interaction (& sea ice
energy balance). (201677~)
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On-board atmospheric observation

. Basic meteorological variables

—  pressure, temperature, wind speed &
direction, and humidity

2D sonic 1
anemometer

Short-wave

radiation
sensor

Short-wave radiometer (PSP)
Long-wave radiometer (PIR) CRDS (G2301-f) Windmill
Temperature & RH (HMP45D) CPC Data logger (CR3000) Anemometer

Pressure sensor (PTB100) Acthalometer Motion Sensor (MPII) (031050-L)
Quantum sensor (LI-200) Nephelometer

Data logger (CR3000)

2D sonic anemometer

W) AN

4-component radiations

— shortwave and longwave radiations
(upward and downward)

Sonic Anemometer
(CSAT3)
Infra-red gas

analyzer (LI7500)
- Motion Sensor
ARACN ; (MPII)
Net radiometer
(CNR1)
CRDS intake

3D Sonic

Anemometer

* Heights in parenthesis are the distance of instruments from design load waterline (DLWL) . Eddy covariance system
Af%ﬁ\k 2X|HPEL — momentum, sensible heat, latent

heat, and gas fluxes




2014 Araon Arctic cruise (Leg 1)

« 2014.07.30 ~ 2014.08.25
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Meteorological Data (Air Pressure)
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Meteorological Data (Wind)
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Meteorological Data (Net Radiation)
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1ced atmospheric observations (vertical profiles & clouds)

. Basic meteorological variables

—  pressure, temperature, wind speed &
direction, and humidity

PR 2D sonic
anemometer

Long-wave
radiation sensor

Temperature &
humidity sensor

sdiometer (PSP)

adiometer (PIR) CRDS (G2301-f) Windmill

8 RH (HMP45D) CPC Data logger (CR3000) Anemometer
nsor (PTB100) Aethalometer Motion Sensor (MPII) (031050-L)
ensor (LI-200) Nephelometer

er (CR3000)

4-component radiations

— shortwave and longwave radiations
(upward and downward)

Sonic Anemometer
(CSAT3)
Infra-red gas

analyzer (L17500)
- Motion Sensor
ARACN (MPII)
Net radiometer
(CNR1)
CRDS intake

Anemometer
(CSATAImE
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lecessary?

 far. ..
Only routine on-board surface observations along the ship track
No atmospheric field scientists mainly involved in the Pacific Arctic met observation

e coming years, under the auspices of PAG climate line...

-nhance on-board measurements of upper atmosphere & clouds

2articipate in the internationally coordinated observation supportive of the YOPP
nitiative

Ty a sea ice-based observing platform for the ice-atm-ocn interaction with scientific
notivations and organized international collaboration (e.g., MOSAIC)

2d observing components

\tmospheric vertical profiles to study characteristics of atmospheric stability, cloud,
ind moisture distribution under different synoptic backgrounds and to be used to
valuate numerical model predictability

“louds (cover, height, optical thickness, etc.) as a key factor to control the surface
adiative fluxes
+ Clouds can respond to the change in Arctic surface type (open ocean, marginal ice zone, ice




s — Largest Atmospheric Source of Model Uncertainty

ificantly influence the Arctic surface energy budget, thereby affecting sea ice
IP3
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oon from MOSAIC Introduction
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s from satellite data provide us a nice motivation...

nalies and trends in the downwelling longwave radiation flux have been
cated as important drivers of perennial sea ice loss [Francis and Hunter, 2006]

)sorbed solar radiation in early summer plays a precursory role in
rmining the Artic sea ice concentration in late summer [Choi et al., 2014]

nall changes in the cloud-radiative forcing fields can play a significant role as a
ate feedback mechanism [Ramanathan et al., 1989]

a Absorbed solar radiation b Cloud albedo ¢ Clear-sky albedo d Sea ice concentration
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e Cloud Radiative Forcing (SCRF)

CRF = NetSW_CRF + NetLW_CRF
= (NetSW - NetSW._) + (NetLW - NetLW. )

ﬂ After some manipulation

= (SWl-SWCSl)'(—'I—ﬂ') + (LWl'LWCSi) [Ramanathan et al., 1989]

¥

¥

ce SW Cloud Rad. Forcing
ud shield
Always negative

(Cooling)

Surface LW Cloud Rad. Forcing
= Greenhouse effect (Warming)
Always positive

Ito Surface SW CRF | ™= Cloud shield effectt, Surace-albede-effest
» Surface LW CRF 1 == Cloud shield effectt

Caution: For SW, | indicates more negative (i.e., the increase of absolute value)

SW| : Surface downwelling shortwave radiation [W/m?]
SW_.|: Clear-sky surface downwelling shortwave radiation [W/m?]
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relationship between sea ice concentration (SIC) and cloud radiative forcing
-) show large decadal changes

ithle attributina factors: clotds resnons<e to the chanaina surface condition




' (Year of Polar Prediction)

xtended period of coordinated intensive
rvational and modelling activities, in order to
ove prediction capabilities for the polar regions
beyond, on a wide range of time scales from

s to seasons

y element of the WWRP-PPP

YOPP mid- Consolidation

Phase
)13 to mid-2017 201710 mid-2019 to

mid-2019
unity engagement
ment with other Dedicated model
anned activities experiments
evelopment of Research into use & :
ementation Plan value of forecasts Dedicated reanalyses
aratory research Intensive verification : Operatlonall
effort implementation
mmer school S
Workshops Summer school YOPP publications

A hiliratan S YOPP conference

eparation Phase

Intensive observing periods

Y [ Data denial experiments

Model developments

WORLD METEOROLOGICAL ORGANIZATION

WORLD WEATHER RESEARCH PROGRAMME

WWRP/PPP No. 3

WWRP Polar Prediction Project

Implementation Plan

for the Year of Polar Prediction
(YOPP)

October 2014




vational support

ON-based
Met observation and radiosonde sounding for Arctic summer

Met observation and radiosonde sounding for Antarctic summer at Ross Sea and/or
\mundsen Sea

ce-tethered buoys in the Arctic

c land-based
Jasan station: N/A (Met data from Norway and German stations including T, q profile)

svalbard (Hopen?) site: U, T,Q profile (wind lidar and MW radiometer) since 2017
summer? + additional sounding?

Russian (Baranova?) site: support AARI frequent sounding? (limited period 2017, 20187?)

rctic land-based
>ejong station: radiosonde sounding (20187?)
Jangbogo station: frequent radiosonde sounding (20187)




Ing support

Ict of the intense observation data on the predictability
yses of model performance in various aspects (cloud, ABL, sea ice etc.)

Consolidation

YOPP mid- Phase

Preparation Phase 2017 to

2013 to mid-2017 mid-2019 to

mid-2019 2022

: Intensive observing periods : :
Community engagement e s Data denial experiments

Alignment with other
planned activities

Dedicated model
experiments

Research into use & :
Dedicated reanalyses
value of forecasts

Intensive verification Operational
effort implementation

Model developments

Development of
Implementation Plan

Preparatory research

Summer school
Workshops

Fundraising & YOPP conference

Resource mobilization




1 ice dynamics — effects of scales on deformation
Phil Hwang, SAMS, Pedro Elosequi, ICM-CSIC/MIT, Jeremy Wilkinson, BAS
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ning 2015 summer cruise

atmospheric forcing is related to sea ice deformation at different scales?

- 10 KOPRI GPS
-1 KOPRI IMB
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gian young sea ice cruise 2015 (N-ICE2015)

d: January to June 2015
Norwegian RV Lance
eg 1 (early January to mid-February, 2) and 2 (mid-February to late March, 2)
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gian young sea ice cruise 2015 (N-ICE2015)

d: January to June 2015
Norwegian RV Lance
eg 1 (early January to mid-February, 2) and 2 (mid-February to late March, 2)
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Il outdoor labor, polar beak attack, but lots of fun




preliminary results
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 Ice Mass Balance Array (SIMBA)

cted 24 IMB data (from Jeremy Wilkinson, BAS) during the MIZ campaign
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ary

the topic of sea ice and atmosphere,

COPRI will enhance meteorological observations and cloud observing
nstruments.

\s a legacy of the MIZ program, KOPRI will continue to observe floe-scale
lynamic sea ice deformation with an autonomous platform next year.

MB buoy will be continuously deployed to measure sea ice mass balance and
emperature profile.

COPRI atmoespheric-physical scientists will aim to have an integrated platform
o study thermodynamic sea ice — atmosphere — ocean interaction (& sea ice
nergy balance). (201677~)







ance on-board meteorological observations and cloud observing instruments
S)

nstall all sky camera on the top of foremast

Re-operate on-board lidar (dual polarization lidar)

Regular launch of a radiosonde balloon during the Arctic cruise

nomous platform to observe floe-scale dynamic sea ice deformation (2015)

nstrument: Array of GPS buoys s mouars

3egin: early September (during Araon cruise)
arget: freezing season (October — March) ir_“‘ [ e
arge-scale feature: satellite SARimages ¢ j m | \
rated platform to study thermodynamic -y

ce — atmosphere interaction (in situ sea R

nergy balance) (2016~) ‘

>loud Instruments + AOFB + IMB + ITP -> spiiics—sl

AOQOS (Ice - Atmosphere - Arctic Ocean
Dbserving System) like?
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yment of Sea Ice Buoys

Large-scale IMB array




