PAG Climate Line Workshop Spring 2015 (Tokyo, Japan)

An Overview of Activities for PAG International Climate Line - KOPRI, Republic of Korea -

Joo-Hong Kim Division of Climate Change, Korea Polar Research Institute (On behalf of KOPRI participants)

Korea Polar Research Institute

• ARAON will cover the region from the Chukchi Borderland to the Mendeleev Ridge.

•

- Sea ice physics (dynamics/thermodynamics)
 - The floe-scale deformation process
 - The heat flux at ice-ocean boundary during the freezing season

•

- Upper ocean physics under sea ice
 - To understand the condition for heat release from the ocean
 - To examine temporal variation of halocline structure in the upper ocean (up to 500 m depth)
 - To study the mixing produced by ice drag stress and stratification

Melt pond biogeochemistry

- Objectives
 - To define environmental characteristics of various melt ponds on sea ice floes in the Arctic Ocean

800

/13 18:00

Depth (m) 10000

9000

- To understand food web interaction associated with environmental variation
- To estimate the carbon contribution of entire sea ice floes in the Arctic Ocean

Research components

- Plankton composition and diversity
- Production and respiration of plankton
- Gas interaction between air and pond surface
- Biogeochemical parameters (Carbon, Nitrogen and DMS)
- Spectral observation

•

Biogeochemistry under sea ice

- The effect of changing sea-ice on Arctic marine ecosystem
- Species composition, abundance, and diversity associated with sea ice condition
- Carbon interaction between Sea Ice and water column
- Particle flux and vertical distribution under the sea ice
- Research components
 - Plankton composition and diversity
 - Production and macromolecular of ice algae
 - *p*CO₂ monitoring under sea ice
 - Sediment trap & LISST Holo

• Marine chemistry

- Inorganic chemistry
 - Spatial and temporal variation of inorganic carbon system
 - Behavior of nutrients (NH₄, NO₂+NO₃, PO₄ and SiO₂)

Underway pCO₂ measurement

Analytical system for DIC

pH measurement system

Auto-analyzer

- Organic chemistry
 - Characteristic of dissolved and particulate organic matter (DOM and POM)

Filtering system for DOM

TOC-TN analyzer

POM collecting system

•

Microbes/Plankton ecology

- Distribution of bacteria and virus and community structure
- Species compositions of phytoplankton, chlorophyll *a* concentration and primary production
- Abundance and community structure of heterotrophic protists
- Mesozooplankton community and grazing impacts on phytoplankton biomas

Remote sensing

٠

- Ocean optics measurement (ocean color)

Above water spectroradiometer

APC deployment

Atmospheric observation

- Aerosols properties
 - condensation particle count, black carbon mass concentration, scattering coefficient

All-sky camera

Radiosonde

- Enhance on-board meteorological observations
 - Cloud observing instruments
 - Radiosonde profiles
 - \rightarrow Contribution to YOPP
- Study of sea ice and clouds
 - Spatial distribution, cover & type, optical and radiative properties
 - Surface properties and synoptic conditions

- Basic meteorological variables
 - pressure, temperature, wind speed & direction, and humidity

- 4-component radiations
 - shortwave and longwave radiations

- Eddy-covariance
 - momentum, sensible and latent heat, and gas fluxes

Summary : KOPRI activities for climate line (2015~)

